Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T12:04:32.632Z Has data issue: false hasContentIssue false

Modelling coronal electron density and temperature profiles of the Active Region NOAA 11855

Published online by Cambridge University Press:  12 September 2017

J. M. Rodríguez Gómez
Affiliation:
National Institute for Space Research (INPE), Avenida dos Astronautas-12227-010, São José dos Campos-SP, Brazil email: jenny.gomez@inpe.br
L. E. Antunes Vieira
Affiliation:
National Institute for Space Research (INPE), Avenida dos Astronautas-12227-010, São José dos Campos-SP, Brazil email: jenny.gomez@inpe.br
A. Dal Lago
Affiliation:
National Institute for Space Research (INPE), Avenida dos Astronautas-12227-010, São José dos Campos-SP, Brazil email: jenny.gomez@inpe.br
J. Palacios
Affiliation:
Departamento de Física y Matemáticas, Universidad de Alcalá University Campus, Sciences Building, P.O. 28871, Alcalá de Henares, Spain
L. A. Balmaceda
Affiliation:
Instituto de Ciencias Astronómicas de la Tierra y el Espacio, ICATE-CONICET, Avda. de España Sur 1512, J5402DSP, San Juan, Argentina.
T. Stekel
Affiliation:
National Institute for Space Research (INPE), Avenida dos Astronautas-12227-010, São José dos Campos-SP, Brazil email: jenny.gomez@inpe.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The magnetic flux emergence can help understand the physical mechanism responsible for solar atmospheric phenomena. Emerging magnetic flux is frequently related to eruptive events, because when emerging they can reconnected with the ambient field and release magnetic energy. We will use a physic-based model to reconstruct the evolution of the solar emission based on the configuration of the photospheric magnetic field. The structure of the coronal magnetic field is estimated by employing force-free extrapolation NLFFF based on vector magnetic field products (SHARPS) observed by HMI instrument aboard SDO spacecraft from Sept. 29 (2013) to Oct. 07 (2013). The coronal plasma temperature and density are described and the emission is estimated using the CHIANTI atomic database 8.0. The performance of the our model is compared to the integrated emission from the AIA instrument aboard SDO spacecraft in the specific wavelengths 171Å and 304Å.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Bobra, M. G., Sun, X., Hoeksema, J. T., Turmon, M., Liu, Y., Hayashi, K., Barnes, G. & Leka, K. D., 2014, Solar Phys., 289, 9 CrossRefGoogle Scholar
Hoeksema, J. T., Liu, Y., Hayashi, K., Sun, X., Schou, J., Couvidat, S., Norton, A., Bobra, M., Centeno, R., Leka, K. D., Barnes, G., & Turmon, M., 2014, Solar Phys., 289, 3483 CrossRefGoogle Scholar
Tripathi, D., Mason, H. E., Young, P. R., & Del Zanna, G., 2008, A&A, 481, 1 Google Scholar
Wheatland, M. S., Sturrock, P. A., & Roumeliotis, G., 2000, ApJ, 540, 2 CrossRefGoogle Scholar