Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T14:42:02.280Z Has data issue: false hasContentIssue false

Modeling cosmic void statistics

Published online by Cambridge University Press:  12 October 2016

Nico Hamaus
Affiliation:
Sorbonne Universités, UPMC Univ Paris 06, Paris, France CNRS, UMR 7095, Institut d'Astrophysique de Paris, Paris, France
P. M. Sutter
Affiliation:
Sorbonne Universités, UPMC Univ Paris 06, Paris, France CNRS, UMR 7095, Institut d'Astrophysique de Paris, Paris, France Center for Cosmology and AstroParticle Physics, Ohio State University, Columbus, USA
Benjamin D. Wandelt
Affiliation:
Sorbonne Universités, UPMC Univ Paris 06, Paris, France CNRS, UMR 7095, Institut d'Astrophysique de Paris, Paris, France Departments of Physics and Astronomy, University of Illinois at Urbana-Champaign, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Understanding the internal structure and spatial distribution of cosmic voids is crucial when considering them as probes of cosmology. We present recent advances in modeling void density- and velocity-profiles in real space, as well as void two-point statistics in redshift space, by examining voids identified via the watershed transform in state-of-the-art ΛCDM n-body simulations and mock galaxy catalogs. The simple and universal characteristics that emerge from these statistics indicate the self-similarity of large-scale structure and suggest cosmic voids to be among the most pristine objects to consider for future studies on the nature of dark energy, dark matter and modified gravity.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Colberg, J. M., Sheth, R. K., Diaferio, A., Gao, L., & Yoshida, N. 2005, MNRAS, 360, 216 Google Scholar
Hamaus, N., Wandelt, B. D., Sutter, et al. 2014, Phys. Rev. Lett., 112, 041304 Google Scholar
Hamaus, N., Sutter, P. M., & Wandelt, B. D. 2014, Phys. Rev. Lett., 112, 251302 Google Scholar
Hamaus, N., Sutter, P. M., Lavaux, G., & Wandelt, B. D. 2014, arXiv:1409.3580Google Scholar
Nadathur, S., Hotchkiss, S., Diego, J. M., et al. 2014, arXiv:1407.1295Google Scholar
Neyrinck, M. C. 2008, MNRAS, 386, 2101 Google Scholar
Padilla, N. D., Ceccarelli, L., & Lambas, D. G. 2005, MNRAS, 363, 977 Google Scholar
Paz, D., Lares, M., Ceccarelli, L., Padilla, N., & Lambas, D. G. 2013, MNRAS, 436, 3480 Google Scholar
Ricciardelli, E., Quilis, V., & Varela, J. 2014, MNRAS, 440, 601 CrossRefGoogle Scholar
Sheth, R. K. & van de Weygaert, R. 2004, MNRAS, 350, 517 CrossRefGoogle Scholar
Sutter, P. M., Lavaux, G., Wandelt, B. D., & Weinberg, D. H. 2012 ApJ, 761, 187 Google Scholar
Sutter, P. M., Lavaux, G., Hamaus, N., et al. 2014, MNRAS, 442, 462 Google Scholar
Sutter, P. M., Lavaux, G., Hamaus, N., et al. 2014, arXiv:1406.1191Google Scholar
Warren, M. S. 2013, in Proceedings of SC '13 (ACM, New York, USA), 2HOT: An Improved Parallel Hashed Oct-tree N-body Algorithm for Cosmological Simulation, pp. 72:1–72:12Google Scholar