Hostname: page-component-68c7f8b79f-pksg9 Total loading time: 0 Render date: 2025-12-18T21:17:13.061Z Has data issue: false hasContentIssue false

Migration of bodies to the Earth from different distances from the Sun

Published online by Cambridge University Press:  18 December 2025

Sergei I. Ipatov*
Affiliation:
Vernadsky Institute of Geochemistry and Analytical Chemistry of RAS, 119991, 19 Kosygin st., Moscow, Russia

Abstract

Migration of bodies under the gravitational influence of almost formed planets was studied, and probabilities of their collisions with the Earth and other terrestrial planets were calculated. Based on the probabilities, several conclusions on the accumulation of the terrestrial planets have been made. The outer layers of the Earth and Venus could accumulate similar planetesimals from different regions of the feeding zone of the terrestrial planets. The probabilities of collisions of bodies during their dynamical lifetimes with the Earth could be up to 0.001-0.01 for some initial semi-major axes between 3.2 and 3.6 AU, whereas such probabilities did not exceed 10−5 at initial semi-major axes between 12 and 40 AU. The total mass of water delivered to the Earth from beyond Jupiter’s orbit could exceed the mass of the Earth’s oceans. The zone of the outer asteroid belt could be one of the sources of the late-heavy bombardment. The bodies that came from the zone of Jupiter and Saturn typically collided with the Earth and the Moon with velocities from 23 to 26 km/s and from 20 to 23 km/s, respectively.

Information

Type
Contributed Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Chambers, J. 2013, Icarus, 224, 43 CrossRefGoogle Scholar
Chambers, J. & Wetherill, G.W. 1998, Icarus, 136, 304 CrossRefGoogle Scholar
Ciesla, F.J., Mulders, G.D., Pascucci, I., & Apai, D. 2015, ApJ 804, 9 (11 pp.). DOI: 10.1088/0004-637X/804/1/9 CrossRefGoogle Scholar
Davidsson, B.J.R., Sierks, H., Guttler, C., et al. 2016, A& A 592, A63 Google Scholar
Fulle, M., Della Corte, V., Rotundi, A., et al. 2017, MNRAS, 469, S45 Google Scholar
Howard, K.T., Alexander, C.M.O’D., & Dyl, K.A. 2014, Lunar Planet. Sci. 45, Abstract 1830Google Scholar
Ipatov, S.I. 1993, Solar System Research, 27, 83, https://www.academia.edu/44448077 Google Scholar
Ipatov, S.I. 2010, in: Fernandez, J.A., Lazzaro, D., Prialnik, D., & Schulz, R (eds.), Proc. Int. Astron. Union, Symp. S263. “Icy Bodies in the Solar System”, (Cambridge Univ. Press), p. 41. https://arxiv.org/abs/0910.3017 Google Scholar
Ipatov, S.I. 2019, Solar System Research, 53, 332, DOI: 10.1134/S0038094619050046, https://arxiv.org/abs/2003.11301 CrossRefGoogle Scholar
Ipatov, S.I. 2020, EPSC abstracts, EPSC2020-71, DOI: 10.5194/epsc2020-71 CrossRefGoogle Scholar
Ipatov, S.I. 2021, EPSC abstracts, EPSC2021-100, DOI: 10.5194/epsc2021-100 CrossRefGoogle Scholar
Ipatov, S.I. & Mather, J.C. 2004, Annals of the New York Academy of Sciences 1017, 46, DOI: 10.1196/annals.1311.004, https://arxiv.org/format/astro-ph/0308448 CrossRefGoogle Scholar
Ipatov, S.I. & Mather, J.C. 2006, Adv. Sp. Res. 37, 126, DOI: 10.1016/j.asr.2005.05.076, https://arxiv.org/abs/astro-ph/0411004 CrossRefGoogle Scholar
Ipatov, S.I., Feoktistova, E.A., & Svetsov, V.V. 2020, Solar System Research, 54, 384. DOI: 10.1134/S0038094620050019, https://arxiv.org/abs/2011.00361 CrossRefGoogle Scholar
Levison, H.F. & Duncan, M.J. 1994, Icarus 108, 18 CrossRefGoogle Scholar
Levison, H.F., Dones, L., Chapman, C.R., et al. 2001, Icarus 151, 286 CrossRefGoogle Scholar
Lodders, K. 2003, ApJ 591, 1220 CrossRefGoogle Scholar
Lunine, J.I., Chambers, J., Morbidelli, A., & Leshin, L.A. 2003, Icarus, 165, 1 CrossRefGoogle Scholar
Marov, M.Ya. & Ipatov, S.I. 2018, Solar System Research, 52, 392, DOI: 10.1134/S0038094618050052, https://arxiv.org/abs/2003.09982 CrossRefGoogle Scholar
Marov, M.Ya. & Ipatov, S.I. 2021, Geochemistry International, 59, 1010. DOI: 10.1134/S0016702921110070, https://arxiv.org/abs/2112.06047 CrossRefGoogle Scholar
Mazrouei, S., Ghent, R.R., Bottke, W.F., et al. 2019, Science, 363, 253 CrossRefGoogle Scholar
Mezger, K., Debaille, V., & Kleine, T. 2013, Space Sci. Revs. 174, 27 CrossRefGoogle Scholar
Morbidelli, A., Chambers, J., Lunine, J.I., et al. 2000, Meteor. Planet. Sci. 35, 1309 CrossRefGoogle Scholar
Morbidelli, A., Lunine, J.I., O’Brien, D.P., et al. 2012, Ann. Rev. Earth Planet. Sci. 40, 251 CrossRefGoogle Scholar
Nesvorny, D., Roig, F., & Bottke, W.F. 2017, AJ, 153, A103 CrossRefGoogle Scholar
O’Brien, D.P., Walsh, K.J., Morbidelli, A., et al. 2014, Icarus, 239, 74 CrossRefGoogle Scholar
Ormel, C.W., Liu, B., & Shoonenberg, D. 2017, A& A., 604, A1 Google Scholar
Petit, J.-M., Morbidelli, A., & Chambers, J. 2001, Icarus, 153, 338 CrossRefGoogle Scholar
Raymond, S.N., Quinn, T., & Lunine, J.I. 2004, Icarus, 168, 1 CrossRefGoogle Scholar
Raymond, S.N., O’Brien, D.P., Morbidelli, A., & Kaib, N.A. 2009, Icarus, 203, 644 CrossRefGoogle Scholar