Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T23:15:18.295Z Has data issue: false hasContentIssue false

Measuring SEDs for individual galaxy components

Published online by Cambridge University Press:  17 August 2012

Steven P. Bamford
Affiliation:
School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK email: steven.bamford@nottingham.ac.uk
Boris Häußler
Affiliation:
School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK email: steven.bamford@nottingham.ac.uk
Alex Rojas
Affiliation:
Carnegie Mellon University in Qatar, PO Box 24866, Doha, Qatar
Marina Vika
Affiliation:
Carnegie Mellon University in Qatar, PO Box 24866, Doha, Qatar
Jim Cresswell
Affiliation:
Carnegie Mellon University in Qatar, PO Box 24866, Doha, Qatar
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Our project, ‘MegaMorph’, is developing a next-generation tool for decomposing galaxies, in terms of both their structures and stellar populations. By combining data from UV to NIR wavelengths, accounting for morphological peculiarities using non-parametric components, and utilising efficient likelihood sampling methods, we are working to significantly improve the robustness and accuracy of galaxy decomposition. Applying these new techniques to modern large surveys will provide us with a deeper understanding of galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Abazajian, K. N., et al. 2009, ApJS, 182, 543CrossRefGoogle Scholar
Allen, P. D., et al. 2006, MNRAS, 371, 2CrossRefGoogle Scholar
Barden, M., Jahnke, K. & Häußler, B. 2008, ApJS, 175, 105CrossRefGoogle Scholar
Benson, A. J. 2010, Phys. Rep., 495, 33CrossRefGoogle Scholar
Benson, A. J. & Devereux, N. 2010, MNRAS, 402, 2321CrossRefGoogle Scholar
Bertin, E. & Arnouts, S. 1996, A&AS, 117, 393Google Scholar
Cole, S., et al. 2000, MNRAS, 319, 168CrossRefGoogle Scholar
Cook, M., Lapi, A., & Granato, G. L. 2009, MNRAS, 397, 534CrossRefGoogle Scholar
Driver, S. P., et al. 2009, A&G 50 5.12Google Scholar
Driver, S. P., et al. 2011, MNRAS, 413, 971CrossRefGoogle Scholar
Feroz, F., Hobson, M. P., & Bridges, M. 2009, MNRAS, 398, 1601CrossRefGoogle Scholar
Häussler, B., et al. 2007, ApJS, 172, 615CrossRefGoogle Scholar
Hogg, D. W., Bovy, J., & Lang, D. 2010, ArXiv e-prints, arXiv:1008.4686Google Scholar
Lawrence, A., et al. 2007, MNRAS, 379, 1599CrossRefGoogle Scholar
Lintott, C., et al. 2011, MNRAS, 410, 166CrossRefGoogle Scholar
Peng, C. Y., et al. 2002, AJ, 124, 266CrossRefGoogle Scholar
Peng, C. Y., et al. 2010, AJ, 139, 2097CrossRefGoogle Scholar
Simard, L., et al. 2002, ApJS, 142, 1CrossRefGoogle Scholar
Simard, L., et al. 2011, ApJS, 196, 11CrossRefGoogle Scholar