No CrossRef data available.
Published online by Cambridge University Press: 16 July 2018
Population of high quantum number states can differ from their LTE values at high densities (Ne ~106 − 108 cm−3) and temperatures of the order of 104 K. In this case, the intensity of recombination lines can be strongly amplified. The amount of amplification depends on density and temperature, and it is different for different quantum numbers, allowing the determination of the physical and kinematic conditions of the emitting region through the observation of recombination lines of different quantum numbers. This was the case of the massive binary system η Carinae. This system was observed with ALMA in the recombination lines H21α, H28α, H30α, H40α and H42α and the continuum at the frequencies of the corresponding lines. The continuum spectrum was characteristic of a compact HII region, becoming optically thin at around 300 GHz. From the intensity and width of the recombination lines we concluded that the not-resolved emission region, assumed spherically symmetric, is a shell of 40 AU radius and 4 AU width, expanding at velocities between 20 and 60 km s−1, with density of 107 cm−3 and temperature of 17000 K.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.