Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T22:34:36.031Z Has data issue: false hasContentIssue false

Maser Activity of Large Molecules toward Sgr B2 North

Published online by Cambridge University Press:  07 February 2024

Ci Xue*
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Anthony Remijan
Affiliation:
National Radio Astronomy Observatory, Charlottesville, VA 22903, USA
Alexandre Faure
Affiliation:
Université Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France
Brett McGuire
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA. National Radio Astronomy Observatory, Charlottesville, VA 22903, USA
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Single-dish observations at centimeter wavelengths have suggested that the Sgr B2 molecular cloud at the Galactic Center hosts weak maser emission from several large molecules. Here, we present the interferometric observations of the Class I methanol (CH3OH) maser at 84 GHz, the methanimine (CH2NH) maser at 5.29 GHz, and the methylamine (CH2NH2) maser at 4.36 GHz toward Sgr B2 North (N). We use a Bayesian approach to quantitatively assess the observed masing spectral profiles and the excitation conditions. By comparing the spatial origin and extent of maser emission from several molecular species, we find that the new maser transitions have a close spatial relationship with the Class I masers, which suggests a similar collisional pumping mechanism.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Argon, A. L., Reid, M. J., & Menten, K. M. 2000, ApJS, 129, 159 10.1086/313406CrossRefGoogle Scholar
Caswell, J. L., Fuller, G. A., Green, J. A., et al. 2010, MNRAS, 404, 1029 10.1111/j.1365-2966.2010.16339.xCrossRefGoogle Scholar
Cyganowski, C. J., Brogan, C. L., Hunter, T. R., et al. 2009, ApJ, 702, 1615 10.1088/0004-637X/702/2/1615CrossRefGoogle Scholar
Chen, X., Sobolev, A. M., Ren, Z.-Y., et al. 2020, Nature Astronomy, 4, 1170 10.1038/s41550-020-1144-xCrossRefGoogle Scholar
Faure, A., Remijan, A. J., Szalewicz, K., et al. 2014, ApJ, 783, 72 10.1088/0004-637X/783/2/72CrossRefGoogle Scholar
Faure, A., Lique, F., & Remijan, A. J. 2018, The Journal of Physical Chemistry Letters, 9, 3199 10.1021/acs.jpclett.8b01431CrossRefGoogle Scholar
Kartje, J. F., Königl, A., & Elitzur, M. 1999, ApJ, 513, 180 10.1086/306824CrossRefGoogle Scholar
Gaume, R. A., Claussen, M. J., de Pree, C. G., et al. 1995, ApJ, 449, 663 10.1086/176087CrossRefGoogle Scholar
Gorski, M. D., Aalto, S., Mangum, J., et al. 2021, A&A, 654, A110 Google Scholar
Mehringer, D. M. & Menten, K. M. 1997, ApJ, 474, 346 10.1086/303454CrossRefGoogle Scholar
McGuire, B. A., Loomis, R. A., Charness, C. M., et al. 2012, ApJL, 758, L33 10.1088/2041-8205/758/2/L33CrossRefGoogle Scholar
Reid, M. J., Menten, K. M., Brunthaler, A., et al. 2019, ApJ, 885, 131 10.3847/1538-4357/ab4a11CrossRefGoogle Scholar
Walsh, A. J., Purcell, C. R., Longmore, S. N., et al. 2014, MNRAS, 442, 2240 10.1093/mnras/stu989CrossRefGoogle Scholar
Yan, Y. T., Henkel, C., Menten, K. M., et al. 2022, A&A, 666, L15 Google Scholar