Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T00:53:00.975Z Has data issue: false hasContentIssue false

Long-term variations in the heliosphere

Published online by Cambridge University Press:  27 November 2018

Mathew J. Owens
Affiliation:
Department of Meteorology, University of Reading, Reading RG6 6BB, UK email: m.j.owens@reading.ac.uk
Mike Lockwood
Affiliation:
Department of Meteorology, University of Reading, Reading RG6 6BB, UK email: m.j.owens@reading.ac.uk
Pete Riley
Affiliation:
Predictive Science Inc., 9990 Mesa Rim Rd, Suite 170, San Diego, CA 92121, USA
Luke Barnard
Affiliation:
Department of Meteorology, University of Reading, Reading RG6 6BB, UK email: m.j.owens@reading.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Reconstructions of long-term solar variability underpin our understanding of the solar dynamo, potential tropospheric climate implications and future space weather scenarios. Prior to direct spacecraft measurements of the heliospheric magnetic field (HMF) and solar wind, accurate annual reconstructions are possible using geomagnetic and sunspot records. On longer timescales, information about the HMF can be extracted from cosmogenic radionuclide records, particularly 14C in ancient trees and 10Be in ice sheets. These proxies, and what they reveal about the HMF and solar wind, are briefly reviewed here.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Acero, F. J. et al., Extreme value theory applied to the millennial sunspot number series, Astrophys. J., 853 (1), 80, 2018.Google Scholar
Clette, F. et al., Revisiting the sunspot number, Space Sci. Rev., 186 (1–4), 35103, doi:10.1007/s11214-014-0074-2, 2014.Google Scholar
Gosling, J. T., et al., The band of solar wind variability at low heliographic latitudes near solar activity minimum, Geophys. Res. Lett., 22 (23), 33293332, doi:10.1029/95GL02163, 1995.Google Scholar
Henley, E. M., & Pope, E. C. D., Cost-loss analysis of ensemble solar wind forecasting, Space Weather, 15 (12), 15621566, doi:10.1002/2017SW001758, 2017SW001758, 2017.Google Scholar
King, J. H., & Papitashvili, N. E., Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data, J. Geophys. Res., 110, doi:10.1029/2004JA010649, 2005.Google Scholar
Krivova, N. A. et al., Reconstruction of solar total irradiance since 1700 from the surface magnetic flux, Astron. Astrophys., 467, 335346, doi:10.1051/0004-6361:20066725, 2007.Google Scholar
Lockwood, M., Reconstruction and prediction of variations in the open solar magnetic flux and interplanetary conditions, Liv. Rev. Sol. Phys., 10, 4, doi:10.12942/lrsp-2013-4, 2013.Google Scholar
Lockwood, M. et al., Reconstruction of geomagnetic activity and near-earth interplanetary conditions over the past 167 yr - part 4: Near-earth solar wind speed, IMF, and open solar flux, Ann. Geophys., 32, 383399, doi:10.5194/angeo-32-383-2014, 2014.Google Scholar
Lockwood, M. et al., Space climate and space weather over the past 400 years: 2. proxy indicators of geomagnetic storm and substorm occurrence, Space Weather Space Clim., 8, A12, doi:10.1051/swsc/2017048, 2018.Google Scholar
McComas, D. J. et al., The three-dimensional solar wind around solar maximum, Geophys. Res. Lett., 30, doi:10.1029/2003GL017136, 2003.Google Scholar
McCracken, K., & Beer, J., The annual cosmic-radiation intensities 1391-2014; the annual heliospheric magnetic field strengths 1391 - 1983, Sol. Phys., 290 (10), 30513069, doi:10.1007/s11207-015-0777-x, 2015.Google Scholar
Owens, M. J., & Crooker, N. U., Coronal mass ejections and magnetic flux buildup in the heliosphere, J. Geophys. Res., 111 (A10), A10, 104, doi:10.1029/2006JA011641, 2006.Google Scholar
Owens, M. J., & Forsyth, R. J., The heliospheric magnetic field, Liv. Rev. Sol. Phys., 10, 5, doi:10.12942/lrsp-2013-5, 2013.Google Scholar
Owens, M. J., & Lockwood, M., Cyclic loss of open solar flux since 1868: The link to heliospheric current sheet tilt and implications for the maunder minimum, J. Geophys. Res., 117 (A4), A04, 102, doi:10.1029/2011JA017193, 2012.Google Scholar
Owens, M. J. et al., Estimating total heliospheric magnetic flux from single-point in situ measurements, J. Geophys. Res., 113, doi:10.1029/2008JA013677, 2008.Google Scholar
Owens, M. J., Lockwood, M., & Riley, P., Global solar wind variations over the last four centuries, Scientific Reports, 7, 41, 548, doi:10.1038/srep41548, 2017.Google Scholar
Owens, M. J., et al., Near-earth heliospheric magnetic field intensity since 1750. part 1: Sunspot and geomagnetic reconstructions, J. Geophys. Res., 121, 60486063, doi:10.1002/2016JA02252, 2016.Google Scholar
Riley, P., On the probability of occurrence of extreme space weather events, Space Weather, 10 (2), n/an/a, doi:10.1029/2011SW000734, s02012, 2012.Google Scholar
Sheeley, N. Jr et al., Coronal inflows and the sun’s nonaxisymmetric open flux, Astrophys. J. Lett., 546 (2), L131, 2001.Google Scholar
Smith, E. J., & Balogh, A., Ulysses observations of the radial magnetic field, Geophys. Res. Lett., 22, 33173320, doi:10.1029/95GL02826, 1995.Google Scholar
Solanki, S. et al. Secular variation of the sun’s magnetic flux, Astron. Astrophys., 383 (2), 706712, 2002.Google Scholar
Steinhilber, F., et al., 9, 400 years of cosmic radiation and solar activity from ice cores and tree rings, Proc. Nat. Academy of Sci., 109, 59675971, doi:10.1073/pnas.1118965109, 2012.Google Scholar
Svalgaard, L., & Cliver, E. W., The idv index: Its derivation and use in inferring long-term variations of the interplanetary magnetic field strength, J. Geophys. Res., 110, 12, 103–+, doi:10.1029/2005JA011203, 2005.Google Scholar
Usoskin, I. G., A history of solar activity over millennia, Liv. Rev. Sol. Phys., 14 (3), doi:10.1007/s41116-017-0006-9, 2017.Google Scholar
Vasyliunas, V. M. et al., Scaling relations governing magnetospheric energy transfer, Planet. Space Sci., 30 (4), 359365, doi:10.1016/0032-0633(82)90041-1, 1982.Google Scholar