Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T10:47:09.299Z Has data issue: false hasContentIssue false

Lithium in a metal-poor external galaxy: ω Centauri

Published online by Cambridge University Press:  23 April 2010

P. Bonifacio
Affiliation:
GEPI, Observatoire de Paris, CNRS, Université Paris Diderot; Place Jules Janssen, 92190 Meudon, France email: Piercarlo.Bonifacio@obspm.fr Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Trieste, Via Tiepolo 11, I-34143 Trieste, Italy
L. Monaco
Affiliation:
Universidad de Concepción, Casilla 160-C, Concepción, Chile European Southern Observatory, Casilla 19001, Santiago, Chile
L. Sbordone
Affiliation:
Max Planck Institut for Astrophysics Karl-Schwarzschild-Str. 1 85741 Garching, Germany
S. Villanova
Affiliation:
Universidad de Concepción, Casilla 160-C, Concepción, Chile
E. Pancino
Affiliation:
Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Bologna, Via Ranzani 1, 40127, Bologna, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

ω Centauri is a massive stellar system which is currently going through the Galactic Halo. Its compact aspect and spheroidal shape have for a long time led to it being classified as a Globular Cluster. However the fact that its stars cover a wide metallicity range (−0.6 < [Fe/H] < −2.1), points to this object as an external galaxy, satellite of the Milky Way. Lithium among warm metal-poor stars shows a roughly constant abundance, the “Spite Plateau”. This has been interpreted as evidence for a primordial origin of the lithium nucleus, at the time of nucleosynthesis. After the physical conditions under which nucleosynthesis occurred, have been constrained by the observations of the fluctuations of the Cosmic Microwave Background, we are facing a “cosmological lithium problem”, namely the primordial lithium was a factor of three to four higher than what observed in the Spite plateau. Several avenues may be taken to solve this conundrum, either relying on fundamental physics or on stellar physics, however the realm of possibilities may be considerably narrowed by observing stellar populations in different galaxies, which have experienced different evolutionary histories. Some of the proposed “solutions” may be clearly ruled out, depending on the observation of lithium in the metal-poor populations of external galaxies. ω Centauri is the only external galaxy amenable to such an investigation in the era of 8m telescopes. We have pushed to its limits FLAMES at the ESO 8.2m telescope to obtain high resolution spectra of the Li i doublet in 91 Turn-Off and Sub-Giant stars at V ~ 18 in ω Centauri. We present our preliminary results on this data which suggest that the Li content in ω Centauri warm stars is comparable to that observed in Galactic Halo field stars of similar metallicities and temperatures. This may effectively rule out a whole class of models which invoke a severe Li depletion through processing of material in an early generation of massive stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Barklem, P. S., Piskunov, N., & O'Mara, B. J. 2000a, A&A (Letters), 355, 5Google Scholar
Barklem, P. S., Piskunov, N., & O'Mara, B. J. 2000b, A&A, 363, 1091Google Scholar
Bellini, A., Piotto, G., Bedin, L.R., Anderson, J., Platais, I. et al. 2009, A&A, 493, 959Google Scholar
Bonifacio, P. et al. 2002, A&A, 390, 91Google Scholar
Cayrel, R. 1988, in The Impact of Very High S/N Spectroscopy on Stellar Physics, G. Cayrel de Strobel and M. Spite eds., IAU Symp. 132, p. 345CrossRefGoogle Scholar
D'Antona, F. & Ventura, P. 2010, this volumeGoogle Scholar
Dunkley, J. et al. 2009, ApJS, 180, 306CrossRefGoogle Scholar
Hilker, M., Kayser, A., Richtler, T., & Willemsen, P. 2004, A&A (Letters), 422, 9Google Scholar
Hisano, J., Kawasaki, M., Kohri, K., & Nakayama, K. 2009, Phys. Rev. D, 79, 063514CrossRefGoogle Scholar
Hughes, J., Wallerstein, G., van Leeuwen, F., & Hilker, M. 2004, AJ, 127, 980CrossRefGoogle Scholar
Jedamzik, K. 2004, Phys. Rev. D, 70, 083510CrossRefGoogle Scholar
Jedamzik, K. 2006, Phys. Rev. D, 74, 103509CrossRefGoogle Scholar
Jittoh, T. et al. 2008, Phys. Rev. D, 78, 055007CrossRefGoogle Scholar
Johnson, C. I., Pilachowski, C. A., Michael Rich, R., & Fulbright, J. P. 2009, ApJ, 698, 2048CrossRefGoogle Scholar
Kayser, A., Hilker, M., Richtler, T., & Willemsen, P. G. 2006, A&A, 458, 777Google Scholar
Kurucz, R. L. 2005, Memorie della Società Astronomica Italiana Supplementi, 8, 14Google Scholar
Lee, Y.-W. et al. 2005, ApJ (Letters), 621, 57CrossRefGoogle Scholar
Norris, J. E. 2004, ApJ (Letters), 612, 25CrossRefGoogle Scholar
Piau, L. et al. 2006, ApJ, 653, 300CrossRefGoogle Scholar
Richard, O., Michaud, G., & Richer, J. 2005, ApJ, 619, 538CrossRefGoogle Scholar
Romano, D., Tosi, M., Cignoni, M., Matteucci, F., Pancino, E., & Bellazzini, M. 2009, MNRAS, 1604Google Scholar
Sbordone, L. 2005, Memorie della Societa Astronomica Italiana Supplementi, 8, 61Google Scholar
Sbordone, L., Bonifacio, P., Castelli, F., & Kurucz, R. L. 2004, Memorie della Societá Astronomica Italiana Supplementi, 5, 93Google Scholar
Sbordone, et al. 2010, A&A submittedGoogle Scholar
Schaller, G., Schaerer, D., Meynet, G., & Maeder, A. 1992, A&AS, 96, 269Google Scholar
Sollima, A., Ferraro, F. R., Pancino, E., & Bellazzini, M. 2005, MNRAS, 357, 265CrossRefGoogle Scholar
Spite, M. & Spite, F. 1982a, Nature, 297, 483CrossRefGoogle Scholar
Spite, F. & Spite, M. 1982b, A&A, 115, 357Google Scholar
Spite, M. & Spite, F. 2010, IAU Symposium 268: “Light elements in the Universe”, Charbonnel, C., Tosi, M., Primas, F. & Chiappini, C., eds., this volumeGoogle Scholar
Steigman, G. 2010, IAU Symposium 268: “Light elements in the Universe”, Charbonnel, C., Tosi, M., Primas, F. & Chiappini, C., eds., this volumeGoogle Scholar
Stanford, L. M., Da Costa, G. S., Norris, J. E., & Cannon, R. D. 2006, ApJ, 647, 1075CrossRefGoogle Scholar
Stehle, R. & King, A. R. 1999, MNRAS, 304, 698CrossRefGoogle Scholar
van de Ven, G., van den Bosch, R. C. E., Verolme, E. K., & de Zeeuw, P. T. 2006, A&A, 445, 513Google Scholar
Ventura, P. & D'Antona, F. 2010, MNRAS, in press, arXiv:0912.4399Google Scholar
Villanova, S. et al. 2007, ApJ, 663, 296CrossRefGoogle Scholar