Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T00:11:47.021Z Has data issue: false hasContentIssue false

Large scale magnetic fields in discs: jets and reconnection X-winds

Published online by Cambridge University Press:  01 May 2007

Jonathan Ferreira
Affiliation:
Laboratoire d'Astrophysique de Grenoble, F-38041 Grenoble, France email: Jonathan.Ferreira@obs.ujf-grenoble.fr
Nicolas Bessolaz
Affiliation:
Laboratoire d'Astrophysique de Grenoble, F-38041 Grenoble, France email: Jonathan.Ferreira@obs.ujf-grenoble.fr
Claudio Zanni
Affiliation:
Laboratoire d'Astrophysique de Grenoble, F-38041 Grenoble, France email: Jonathan.Ferreira@obs.ujf-grenoble.fr
Céline Combet
Affiliation:
Laboratoire d'Astrophysique de Grenoble, F-38041 Grenoble, France email: Jonathan.Ferreira@obs.ujf-grenoble.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this contribution we first briefly review our current knowledge on the physics of accretion discs driving self-confined jets. It will be shown that a large scale magnetic field is expected to thread the innermost disc regions, giving rise to a transition from an outer standard accretion disc to an inner jet emitting disc. We then report new progresses on the theory of star-disc interaction, allowing to explain the formation of accretion funnel flows with stellar dipole fields consistent with observational constraints. Such a connection is now not only probed by modern observations but it is also requested for spinning down protostars, which are known to be both actively accreting and contracting. This spin down most probably relies on the angular momentum removal by ejection. Two such scenarios will be addressed here, namely “accretion-powered stellar winds” (Matt & Pudritz 2005) and “Reconnection X-winds” (Ferreira, Pelletier & Appl 2000). The latter can slow down a protostar on time scales shorter or comparable to the embedded phase. It will be shown that these two scenarios are not incompatible and that transitions from one to another may even occur as they mainly depend on the stellar dynamo.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Armitage, P. J. & Clarke, C. J. 1996, MNRAS, 280, 458CrossRefGoogle Scholar
Balbus, S. A. 2003, ARAA, 41, 555CrossRefGoogle Scholar
Banerjee, R. & Pudritz, R. E. 2006, ApJ, 641, 949CrossRefGoogle Scholar
Basu, S. & Mouschovias, T. C. 1994, ApJ, 432, 720CrossRefGoogle Scholar
Blandford, R. D. & Payne, D. G. 1982, MNRAS, 199, 883CrossRefGoogle Scholar
Bouvier, J., Alencar, S. H. P., Harries, T. J., Johns-Krull, C. M., Romanova, M. M. 2007, in Protostars and Planets V, ed. Reipurth, B., Jewitt, D., & Keil, K., 479–494Google Scholar
Bouvier, J., Wichmann, R., Grankin, K. et al. , 1997, A&A, 318, 495Google Scholar
Cabrit, S., Edwards, S., Strom, S. E., Strom, K. M. 1990, ApJ, 354, 687CrossRefGoogle Scholar
Casse, F. & Ferreira, J. 2000, A&A, 353, 1115Google Scholar
Casse, F. & Keppens, R. 2002, ApJ, 581, 988CrossRefGoogle Scholar
Casse, F. & Keppens, R. 2004, ApJ, 601, 90CrossRefGoogle Scholar
Collier Cameron, A. & Campbell, C. G. 1993, A&A, 274, 309Google Scholar
DeCampli, W. M. 1981, ApJ, 244, 124CrossRefGoogle Scholar
Donati, J.-F., Paletou, F., Bouvier, J., Ferreira, J. 2005, Nature, 438, 466CrossRefGoogle Scholar
Ferreira, J. 1997, A&A, 319, 340Google Scholar
Ferreira, J. & Casse, F. 2004, ApJl, 601, L139CrossRefGoogle Scholar
Ferreira, J., Dougados, C., Cabrit, S. 2006 a, A&A, in pressGoogle Scholar
Ferreira, J. & Pelletier, G. 1995, A&A, 295, 807Google Scholar
Ferreira, J., Pelletier, G., Appl, S. 2000, MNRAS, 312, 387CrossRefGoogle Scholar
Ferreira, J., Petrucci, P.-O., Henri, G., Saugé, L., Pelletier, G. 2006 b, A&A, 447, 813Google Scholar
Ghosh, P., Pethick, C. J., Lamb, F. K. 1977, ApJ, 217, 578CrossRefGoogle Scholar
Glassgold, A. E., Najita, J., Igea, J. 2004, ApJ, 615, 972CrossRefGoogle Scholar
Hartigan, P., Edwards, S., Ghandour, L. 1995, ApJ, 452, 736CrossRefGoogle Scholar
Hartmann, L. & MacGregor, K. B. 1980, ApJ, 242, 260CrossRefGoogle Scholar
Heiles, C., Goodman, A. A., McKee, C. F., Zweibel, E. G. 1993, in Protostars and Planets III, ed. Levy, E. H. & Lunine, J. I., 279–326Google Scholar
Hirose, S., Uchida, Y., Shibata, K., Matsumoto, R. 1997, PASJ, 49, 193CrossRefGoogle Scholar
Konigl, A. 1989, ApJ, 342, 208CrossRefGoogle Scholar
Kwan, J. 1997, ApJ, 489, 284CrossRefGoogle Scholar
Long, M., Romanova, M. M., Lovelace, R. V. E. 2005, ApJ, 634, 1214CrossRefGoogle Scholar
Lovelace, R. V. E., Li, H., Colgate, S. A., Nelson, A. F. 1999, ApJ, 513, 805CrossRefGoogle Scholar
Lovelace, R. V. E., Romanova, M. M., Bisnovatyi-Kogan, G. S. 1995, MNRAS, 275, 244CrossRefGoogle Scholar
Machida, M. N., Inutsuka, S.-i., Matsumoto, T. 2006, ApJl, 647, L151CrossRefGoogle Scholar
Masset, F. S., Morbidelli, A., Crida, A., Ferreira, J. 2006, ApJ, 642, 478CrossRefGoogle Scholar
Matt, S. & Pudritz, R. E. 2005 a, ApJl, 632, L135CrossRefGoogle Scholar
Matt, S. & Pudritz, R. E. 2005 b, MNRAS, 356, 167CrossRefGoogle Scholar
Ménard, F. & Duchêne, G. 2004, A&A, 425, 973Google Scholar
Miller, K. A. & Stone, J. M. 2000, ApJ, 534, 398CrossRefGoogle Scholar
Moss, D. 2004, A&A, 414, 1065Google Scholar
Najita, J. R., Carr, J. S., Glassgold, A. E., Valenti, J. 2007, ArXiv e-prints, 704Google Scholar
Pringle, J. E. & Rees, M. J. 1972, A&A, 21, 1Google Scholar
Rebull, L. M., Wolff, S. C., Strom, S. E., Makidon, R. B. 2002, AJ, 124, 546CrossRefGoogle Scholar
Shakura, N. I. & Sunyaev, R. A. 1973, A&A, 24, 337Google Scholar
Stone, J. M., Hawley, J. F., Gammie, C. F., Balbus, S. A. 1996, ApJ, 463, 656CrossRefGoogle Scholar
Strom, K. M., Strom, S. E., Wolff, S. C., Morgan, J., Wenz, M. 1986, ApJs, 62, 39CrossRefGoogle Scholar
Uchida, Y. & Low, B. C. 1981, Journal of Astrophysics and Astronomy, 2, 405CrossRefGoogle Scholar
Zanni, C., Ferrari, A., Rosner, R., Bodo, G., Massaglia, S. 2007, A&A, 469, 811Google Scholar