Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T00:40:15.317Z Has data issue: false hasContentIssue false

Laboratory simulation of solar magnetic flux rope eruptions

Published online by Cambridge University Press:  26 August 2011

S. K. P. Tripathi
Affiliation:
Physics & Astronomy, University of California at Los Angeles, Los Angeles, California 90095, USA email: tripathi@physics.ucla.edu
W. Gekelman
Affiliation:
Physics & Astronomy, University of California at Los Angeles, Los Angeles, California 90095, USA email: gekelman@physics.ucla.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A laboratory plasma experiment has been constructed to simulate the eruption of arched magnetic flux ropes (AMFRs e.g., coronal loops, solar prominences) in an ambient magnetized plasma. The laboratory AMFR is produced using an annular hot LaB6 cathode and an annular anode in a vacuum chamber which has additional electrodes to produce the ambient magnetized plasma. Two laser beams strike movable carbon targets placed behind the annular electrodes to generate controlled plasma flows from the AMFR footpoints that drives the AMFR eruption. The experiment operates with a 0.5 Hz repetition rate and is highly reproducible. Thus, time evolution of the AMFR is recorded in three-dimensions with high spatio-temporal resolutions using movable diagnostic probes. Experimental results demonstrate outward expansion of the AMFR, release of its plasma to the background, and excitation of fast magnetosonic waves during the eruption.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Abbot, C. G. Sep 1911, The Sun (D. Appleton and Company, New York and London), p. 128182Google Scholar
Alexander, D. 2007, Ap&SS 307, 197Google Scholar
Antiochos, S. K. 1998, ApJ, 502, L181CrossRefGoogle Scholar
Chen, J. 1996, J. Geophys. Res. 101, 27499CrossRefGoogle Scholar
Cremades, H. & Bothmer, V. 2004, A&A 422, 307Google Scholar
Dennis, B. R. & Schwartz, R. A. 1989, Solar Phys. 1989, 121, 75CrossRefGoogle Scholar
Hansen, J. F. & Bellan, P. M. 2001, ApJ, 563, L183CrossRefGoogle Scholar
Hansen, J. F., Tripathi, S. K. P., & Bellan, P. M. 2004, Phys.Plasmas 11, 3177CrossRefGoogle Scholar
Hildner, E. et al. 1975, Solar Phys. 42, 163CrossRefGoogle Scholar
Hood, A. W. & Priest, E. R. 1979, Solar Phys., 64, 303CrossRefGoogle Scholar
Krall, J., Chen, J., & Santoro, R. 2000, ApJ, 539, 964CrossRefGoogle Scholar
Lang, K. R. 2001, The Cambridge Encyclopedia of the Sun (Cambridge University press), 1st Ed. p. 106143Google Scholar
Tripathi, S. K. P., Bellan, P. M., & Yun, G. S. 2007, Phys. Rev. Lett., 98, 135002CrossRefGoogle Scholar
Tripathi, S. K. P. & Gekelman, W. 2010, Phys. Rev. Lett., 105, 075005CrossRefGoogle Scholar