Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T00:44:49.283Z Has data issue: false hasContentIssue false

Kinematics and composition of the Galactic bulge: recent progress

Published online by Cambridge University Press:  01 July 2007

R. Michael Rich
Affiliation:
Department of Physics and Astronomy, UCLA, Los Angeles CA, 90095-1547, U.S.A. email: rmr@astro.ucla.edu; howard@astro.ucla.edu; reitzel@astro.ucla.edu
Christian Howard
Affiliation:
Department of Physics and Astronomy, UCLA, Los Angeles CA, 90095-1547, U.S.A. email: rmr@astro.ucla.edu; howard@astro.ucla.edu; reitzel@astro.ucla.edu
David B. Reitzel
Affiliation:
Department of Physics and Astronomy, UCLA, Los Angeles CA, 90095-1547, U.S.A. email: rmr@astro.ucla.edu; howard@astro.ucla.edu; reitzel@astro.ucla.edu
HongSheng Zhao
Affiliation:
SUPA, School of Physics and Astronomy, University of St Andrews, KY16 9SS, Fife, U.K. email: hz4@st-andrews.ac.uk
Roberto de Propris
Affiliation:
Cerro Tololo Inter-American Observatory, Casilla 603, La Serena, Chile email: rdepropris@ctio.noao.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present recent results from a Keck study of the composition of the Galactic bulge, as well as results from the bulge Bulge Radial Velocity Assay (BRAVA). Culminating a 10 year investigation, Fulbright, McWilliam, & Rich (2006, 2007) solved the problem of deriving the iron abundance in the Galactic bulge, and find enhanced alpha element abundances, consistent with the earlier work of McWilliam & Rich (1994). We also report on a radial velocity survey of 2MASS-selected M giant stars in the Galactic bulge, observed with the CTIO 4m Hydra multi-object spectrograph. This program is to test dynamical models of the bulge and to search for and map any dynamically cold substructure in the Galactic bulge. We show initial results on fields at −10° < l < + 10° and b = −4°. We construct a longitude-velocity plot for the bulge stars and the model data, and find that contrary to previous studies, the bulge does not rotate as a solid body; from −5° < l < + 5° the rotation curve has a slope of ≈ 100 km s−1 and flattens considerably at greater l and reaches a maximum rotation of 45 km s−1 (heliocentric) or ~ 70 km s−1 (Galactocentric). This rotation is slower than that predicted by the dynamical model of Zhao (1996).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Beaulieu, S., Freeman, K. C., Kalnajs, A. J., Saha, P., & Zhao, H. S. 2000, AJ, 120, 855CrossRefGoogle Scholar
Binney, J. 1978, MNRAS 183, 501CrossRefGoogle Scholar
Blanco, V. M., McCarthy, M. F., & Blanco, B. M. 1984, AJ, 89, 636CrossRefGoogle Scholar
Cunha, K. & Smith, V. V. 2006, ApJ 651, 491Google Scholar
Figer, D. F., Rich, R. M., Kim, S. S., Morris, M., & Serabyn, E. 2004, ApJ, 601, 319Google Scholar
Frogel, J. A. & Whitford, A. E. 1987, ApJ 320, 199CrossRefGoogle Scholar
Fulbright, J. P., McWilliam, A., & Rich, R. M. 2007, ApJ, 661, 1152CrossRefGoogle Scholar
Fulbright, J. P., McWilliam, A., & Rich, R. M. 2006, ApJ, 636, 821CrossRefGoogle Scholar
Izumiura, H. et al. 1995, ApJ, 453, 837CrossRefGoogle Scholar
Kormendy, J. & Kennicutt, R. C. Jr., 2004, ARAA, 42, 603Google Scholar
Kuijken, K. & Rich, R. M. 2002, AJ 124, 2054CrossRefGoogle Scholar
Launhardt, R., Zylka, R., & Mezger, P. G. 2002, A&A, 384, 112Google Scholar
Lecureur, A., et al. 2007, A&A, 465, 799Google Scholar
Maeder, A. 1992, A&A 264, 105Google Scholar
Matteucci, F., Romano, D. & Molaro, P. 1999, A&A 341, 458Google Scholar
McWilliam, A. & Rich, R. M. 2004 in Origin and Evolution of the Elements (McWilliam, A. & Rauch, M. eds) Carnegie, p. 38.Google Scholar
McWilliam, A. & Rich, R. M. 1994, ApJS, 91, 749CrossRefGoogle Scholar
McWilliam, A. et al. 2007, ArXiv e-prints, 708, arXiv:0708.4026Google Scholar
Mould, J. R. 1983, AJ 273, 530Google Scholar
Ortolani, S. et al. 1995, Nature, 377, 701CrossRefGoogle Scholar
Rich, R. M. 1988, AJ 95, 828Google Scholar
Rich, R. M. 1990, ApJ 362, 604CrossRefGoogle Scholar
Rich, R. M., Reitzel, D. B., Howard, C. D., & Zhao, H. 2007, ApJ, 658, L29CrossRefGoogle Scholar
Soto, M., Rich, R. M., & Kuijken, K. 2007, ApJ, 665, L31CrossRefGoogle Scholar
Sharples, R., Walker, A. & Cropper, M., 1990, MNRAS, 246, 54Google Scholar
Whitford, A. E. 1978, ApJ 226, 777CrossRefGoogle Scholar
Zhao, H.S. 1996, MNRAS 283, 149CrossRefGoogle Scholar
Zoccali, M., et al. 2003, A&A, 399, 931Google Scholar
Zoccali, M., et al. 2006, A&A, 457, L1Google Scholar