Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T23:28:57.017Z Has data issue: false hasContentIssue false

Kepler, CoRoT and MOST: Time-Series Photometry from Space

Published online by Cambridge University Press:  20 April 2012

Hans Kjeldsen
Affiliation:
Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark, email: hans@phys.au.dk
Timothy R. Bedding
Affiliation:
Sydney Institute for Astronomy, School of Physics, University of Sydney, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

During the last 10 years we have seen a revolution in the quality and quantity of data for time-series photometry. The two satellites MOST and WIRE were the precursors for dedicated time-series missions. CoRoT (launched in 2006) has now observed more than 100,000 targets for exoplanet studies and a few hundred stars for asteroseismology, while Kepler (launched in 2009) is producing extended time-series data for years, aiming to discover Earth-size planets in or near the habitable zone. We discuss the accuracy of some of the parameters one may extract from the high-quality data from such photometric space missions, including the prospects for detecting oscillation-period changes due to real-time stellar evolution.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Auvergne, M., et al. , 2009, AA, 506, 411CrossRefGoogle Scholar
Barge, P., et al. , 2008, AA, 482, L17CrossRefGoogle Scholar
Batalha, N. M., et al. , 2011, ApJ, 729, 27CrossRefGoogle Scholar
Beck, P. G., et al. , 2011, Science, 332, 205CrossRefGoogle Scholar
Bedding, T. R., et al. , 2011, Nature, 471, 608CrossRefGoogle Scholar
Borucki, W. J., et al. , 2012, accepted for publication in ApJGoogle Scholar
Breger, M. & Pamyatnykh, A. A. 1998, AA, 332, 958Google Scholar
Bruntt, H. 2007, Communications in Asteroseismology, 150, 326CrossRefGoogle Scholar
Bruntt, H. & Buzasi, D. L. 2006, Mem. della Soc. Astron. Italiana, 77, 278Google Scholar
Bruntt, H. & Southworth, J. 2007, in: Hartkopf, W. I., Guinan, E. F., & Harmanec, P. (eds.), Binary Stars as Critical Tools and Tests in Contemporary Astrophysics, Proc. IAUS. 240 (Cambridge, UK: Cambridge University Press), p. 624Google Scholar
Deeg, H. J., et al. , 2010, Nature, 464, 384CrossRefGoogle Scholar
De Ridder, J., et al. , 2009, Nature, 459, 398CrossRefGoogle Scholar
Gilliland, R. L., et al. , 2010, ApJ Letters, 713, L160CrossRefGoogle Scholar
Kjeldsen, H. & Frandsen, S. 1992, PASP, 104, 413CrossRefGoogle Scholar
Koch, D. G., Borucki, W. J., & Basri, G. et al. , 2010, ApJ Letters, 713, L79CrossRefGoogle Scholar
Leger, A., et al. , 2009, AA, 506, 287CrossRefGoogle Scholar
Michel, E., et al. , 2008, Nature, 322, 558Google Scholar
Montgomery, M. H. & O'Donoghue, D. 1999, DSSN, 13, 28Google Scholar
Walker, G., et al. , 2003, PASP, 115, 1023CrossRefGoogle Scholar
Winn, J. N., et al. , 2011, ApJ Letters, 737, L18CrossRefGoogle Scholar