Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T08:17:14.291Z Has data issue: false hasContentIssue false

Jet launching and field advection in quasi-Keplerian discs

Published online by Cambridge University Press:  24 February 2011

Jonathan Ferreira
Affiliation:
Laboratoire d'Astrophysique de Grenoble, CNRS, Université Joseph Fourier, B.P. 53, F-38041 Grenoble, France
Pierre Olivier Petrucci
Affiliation:
Laboratoire d'Astrophysique de Grenoble, CNRS, Université Joseph Fourier, B.P. 53, F-38041 Grenoble, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The fact that self-confined jets are observed around black holes, neutron stars and young forming stars points to a jet launching mechanism independent of the nature of the central object, namely the surrounding accretion disc. The properties of Jet Emitting Discs (JEDs) are briefly reviewed. It is argued that, within an alpha prescription for the turbulence (anomalous viscosity and diffusivity), the steady-state problem has been solved. Conditions for launching jets are very stringent and require a large scale magnetic field Bz close to equipartition with the total (gas and radiation) pressure. The total power feeding the jets decreases with the disc thickness: fat ADAF-like structures with h ~ r cannot drive super-Alfvénic jets. However, there exist also hot, optically thin JED solutions that would be observationally very similar to ADAFs.

Finally, it is argued that variations in the large scale magnetic Bz field is the second parameter required to explain hysteresis cycles seen in LMXBs (the first one would be a).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Blandford, R. D. & Begelman, M. C. 1999, MNRAS, 303, L1CrossRefGoogle Scholar
Blandford, R. D. & Payne, D. G. 1982, MNRAS, 199, 883CrossRefGoogle Scholar
Blandford, R. D. & Znajek, R. L. 1977, MNRAS, 179, 433CrossRefGoogle Scholar
Boutelier, T., Henri, G., & Petrucci, P. 2008, MNRAS, 390, L73CrossRefGoogle Scholar
Casse, F. & Ferreira, J. 2000a, A&A, 353, 1115Google Scholar
Casse, F. & Ferreira, J. 2000b, A&A, 361, 1178Google Scholar
Ferreira, J. 1997, A&A, 319, 340Google Scholar
Ferreira, J. & Casse, F. 2004, ApJL, 601, L139CrossRefGoogle Scholar
Ferreira, J. & Pelletier, G. 1993, A&A, 276, 625Google Scholar
Ferreira, J. & Pelletier, G. 1995, A&A, 295, 807Google Scholar
Ferreira, J., Petrucci, P.-O., Henri, G., Saugé, L., & Pelletier, G. 2006, A&A, 447, 813Google Scholar
Lesur, G. & Longaretti, P.-Y., 2009, A&A, 504, 309Google Scholar
Lubow, S. H., Papaloizou, J. C. B., & Pringle, J. E. 1994, MNRAS, 267, 235CrossRefGoogle Scholar
Murphy, G. C., Ferreira, J., & Zanni, C. 2010, A&A, 512, A82+Google Scholar
Narayan, R. & Yi, I. 1994, ApJL, 428, L13CrossRefGoogle Scholar
Narayan, R. & Yi, I. 1995, ApJ, 444, 231CrossRefGoogle Scholar
Narayan, R., Yi, I., & Mahadevan, R. 1995, Nature, 374, 623CrossRefGoogle Scholar
Ogilvie, G. I. & Livio, M. 1998, ApJ, 499, 329CrossRefGoogle Scholar
Ogilvie, G. I. & Livio, M. 2001, ApJ, 553, 158CrossRefGoogle Scholar
Petrucci, P. O., Ferreira, J., Henri, G., Malzac, J., & Foellmi, C. 2010, ArXiv 1007.1478Google Scholar
Petrucci, P.-O., Ferreira, J., Henri, G., & Pelletier, G. 2008, MNRAS, 385, L88CrossRefGoogle Scholar
Rothstein, D. M. & Lovelace, R. V. E. 2008, ApJ, 677, 1221CrossRefGoogle Scholar
Tagger, M., Varnière, P., Rodriguez, J., & Pellat, R. 2004, ApJ, 607, 410CrossRefGoogle Scholar
Tzeferacos, P., Ferrari, A., Mignone, A., et al. 2009, MNRAS, 400, 820CrossRefGoogle Scholar