Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T00:39:45.639Z Has data issue: false hasContentIssue false

Insights from Spitzer on massive star formation in the LMC

Published online by Cambridge University Press:  01 July 2008

Rémy Indebetouw
Affiliation:
University of Virginia and National Radio Astronomy Observatory, P.O. Box 400325, Charlottesville, VA, 22904USA, email: remy@virginia.edu
Barbara A. Whitney
Affiliation:
Space Science Institute, Boulder, CO, USA
Marta Sewilo
Affiliation:
Space Telescope Science Institute, Baltimore, MD, USA
Thomas Robitaille
Affiliation:
Smithsonian Astrophysical Observatory, Cambridge, MA, USA
Margaret Meixner
Affiliation:
Space Telescope Science Institute, Baltimore, MD, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Spitzer's sensitive mid-IR photometric surveys of the Magellanic Clouds provide a relatively extinction-free census of star formation activity, and sub-parsec resolution permits the study of individual massive protostars and small clusters. Using the SAGE survey of the LMC, we identify over 1000 massive YSO candidates by their MIR colors. Analysis of their spectral energy distributions (SEDs) constrains the stellar content and evolutionary state, beginning to realize for the first time the unique potential of the Clouds to study an entire galaxy's population of individual protostars. We probe the physics underlying the Schmidt-Kennicutt scaling law by analyzing how it begins to break down at 10–100 pc spatial scales. MIR spectroscopic surveys currently underway like SAGE-SPEC will enable us to couple the circumprotostellar dust distribution (the evolutionary state reflected in the SED) with the physical state of the gas, dust and ice.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Calzetti, D., Kennicutt, R. C., Bianchi, L., et al. 2005, ApJS, 633, 871Google Scholar
Fazio, G. G., Hora, J. L., Allen, L. E., et al. 2004, ApJS, 154, 10CrossRefGoogle Scholar
Indebetouw, R., De Messieres, G., et al. 2009, AJ, submittedGoogle Scholar
Indebetouw, R., Whitney, B. A., Kawamura, A., et al. 2008, AJ, 136, 1442CrossRefGoogle Scholar
Johansson, L. E. B., Greve, A., Booth, R. S., et al. 1998, A&A, 331, 857Google Scholar
Kennicutt, R. C. Jr., 1998, ApJ, 498, 541CrossRefGoogle Scholar
Kennicutt, R. C. Jr., Calzetti, D., Walter, F., et al. 2007, ApJ, 671, 333CrossRefGoogle Scholar
Meixner, M., Gordon, K. D., Indebetouw, R., et al. 2006, AJ, 132, 2268CrossRefGoogle Scholar
Morisset, C., Schaerer, D., Bouret, J.-C., & Martins, F. 2004, A&A, 415, 577Google Scholar
Rieke, G. H., Young, E. T., Engelbracht, C. W., et al. 2004, ApJS, 154, 25CrossRefGoogle Scholar
Robitaille, T. P., Whitney, B. A., Indebetouw, R., & Wood, K. 2007, ApJS, 169, 328CrossRefGoogle Scholar
Whitney, B. A., Sewilo, M., Indebetouw, R., et al. 2008, AJ, 136, 18CrossRefGoogle Scholar
Yang, C.-C., Gruendl, R. A., Chu, Y.-H., Mac Low, M.-M., & Fukui, Y. 2007, ApJ, 671, 374CrossRefGoogle Scholar