Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T03:16:09.687Z Has data issue: false hasContentIssue false

Infrared properties of active OB stars in the Magellanic Clouds from the Spitzer SAGE survey

Published online by Cambridge University Press:  12 July 2011

Alceste Z. Bonanos
Affiliation:
Institute of Astronomy & Astrophysics, National Observatory of Athens, I. Metaxa & Vas. Pavlou St., P. Penteli, 15236 Athens, Greecebonanos@astro.noa.gr
Danny J. Lennon
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218, USA
Derck L. Massa
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218, USA
Marta Sewilo
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218, USA
Fabian Köhlinger
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218, USA
Nino Panagia
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218, USA
Jacco Th. van Loon
Affiliation:
Astrophysics Group, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG, UK
Chris J. Evans
Affiliation:
UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ, UK
Margaret Meixner
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218, USA
Karl D. Gordon
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a study of the infrared properties of 4922 spectroscopically confirmed massive stars in the Large and Small Magellanic Clouds, focusing on the active OB star population. Besides OB stars, our sample includes yellow and red supergiants, Wolf-Rayet stars, Luminous Blue Variables (LBVs) and supergiant B[e] stars. We detect a distinct Be star sequence, displaced to the red, and find a higher fraction of Oe and Be stars among O and early-B stars in the SMC, respectively, when compared to the LMC, and that the SMC Be stars occur at higher luminosities. We also find photometric variability among the active OB population and evidence for transitions of Be stars to B stars and vice versa. We furthermore confirm the presence of dust around all the supergiant B[e] stars in our sample, finding the shape of their spectral energy distributions (SEDs) to be very similar, in contrast to the variety of SED shapes among the spectrally variable LBVs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Bonanos, A. Z., Massa, D. L., Sewilo, M., Lennon, D. J. et al. 2009, AJ, 138, 1003CrossRefGoogle Scholar
Bonanos, A. Z., Lennon, D. J., Köhlinger, F., van Loon, J. T. et al. 2010, AJ, 140, 416CrossRefGoogle Scholar
Dougherty, S. M., Waters, L. B. F. M., Burki, G., Cote, J. et al. 1994, A&A, 290, 609Google Scholar
Evans, C. J., Lennon, D. J., Trundle, C., Heap, S. R. et al. 2004, ApJ, 607, 451CrossRefGoogle Scholar
Foellmi, C., Koenigsberger, G., Georgiev, L., Toledano, O. et al. 2008, Rev. Mexicana AyA 44, 3Google Scholar
Gordon, K. D., Meixner, M., Blum, R., et al. 2010, AJ, in preparationGoogle Scholar
Grebel, E. K., Richtler, T. & de Boer, K. S. 1992, A&A, 254, L5Google Scholar
Ita, Y., Matsuura, M., Ishihara, D., Oyabu, S. et al. 2010, A&A, 514A, 2Google Scholar
Lanz, T. & Hubeny, I. 2003, ApJS, 146, 417CrossRefGoogle Scholar
Lanz, T. & Hubeny, I. 2007, ApJS, 169, 83CrossRefGoogle Scholar
Liu, Q. Z., van Paradijs, J., & van den Heuvel, E. P. J. 2005, A&A, 442, 1135Google Scholar
Maeder, A., Grebel, E. K., & Mermilliod, J.-C. 1999, A&A, 346, 459Google Scholar
Martayan, C., Floquet, M., Hubert, A. M., Gutiérrez-Soto, J. et al. 2007a, A&A, 472, 577Google Scholar
Martayan, C., Frémat, Y., Hubert, A.-M., Floquet, M. et al. 2007b, A&A, 462, 683Google Scholar
Martayan, C., Baade, D. & Fabregat, J. 2010, A&A, 509, A11Google Scholar
Meixner, M., Gordon, K. D., Indebetouw, R., Hora, J. L. et al. 2006, AJ, 132, 2268CrossRefGoogle Scholar
Mokiem, M. R., de Koter, A., Vink, J. S., Puls, J. et al. 2007, A&A, 473, 603Google Scholar
Negueruela, I., Steele, I. A., & Bernabeu, G. 2004, AN, 325, 749Google Scholar
Panagia, N. & Felli, M. 1975, A&A, 39, 1Google Scholar
Pojmanski, G. 2002, Acta Astronomica, 52, 397Google Scholar
Porter, J. M. & Rivinius, T. 2003, PASP, 115, 1153CrossRefGoogle Scholar
Szczygieł, D. M., Stanek, K. Z., Bonanos, A. Z., Pojmański, G. et al. 2010, AJ, 140, 14Google Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2001, A&A, 369, 574Google Scholar
Wisniewski, J. P. & Bjorkman, K. S. 2006, ApJ, 652, 458CrossRefGoogle Scholar
Wright, A. E. & Barlow, M. J. 1975, MNRAS, 170, 41CrossRefGoogle Scholar