Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T13:53:12.231Z Has data issue: false hasContentIssue false

Impact hazard monitoring: theory and implementation

Published online by Cambridge University Press:  01 March 2016

D. Farnocchia*
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA email: Davide.Farnocchia@jpl.nasa.gov
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review the most standard impact monitoring techniques. Linear methods are the fastest approach but their applicability regime is limited because of the chaotic dynamics of near-Earth asteroids. Among nonlinear methods, Monte Carlo algorithms are the most reliable ones but also most computationally intensive and so unpractical for routine impact monitoring. In the last 15 years, the Line of Variations method has been the most successful technique thanks to its computational efficiency and capability of detecting low probability events deep in the nonlinear regime. We also present some more recent techniques developed to deal with the new challenges arising in the impact hazard assessment problem. In particular, we describe keyhole maps as a tool to go beyond strongly scattering encounters and how to account for nongravitational perturbations, especially the Yarkovsky effect, when their contribution is the main source of prediction uncertainty. Finally, we discuss systematic ranging to deal with the short-term hazard assessment problem for newly discovered asteroids, when only a short observed arc is available thus leading to severe degeneracies in the orbit estimation process.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Bottke, W. F., Vokrouhlický, D., Rubincam, D. P., & Nesvorný, D. 2006, Annual Review of Earth and Planetary Sciences, 34, 157Google Scholar
Chesley, S. R., Ostro, S. J., Vokrouhlický, D., et al. 2003, Science, 302, 1739Google Scholar
Chesley, S. R. 2005, IAU Colloq. 197: Dynamics of Populations of Planetary Systems, 255Google Scholar
Chesley, S. R. 2006, Asteroids, Comets, Meteors, 229, 215Google Scholar
Chesley, S. R., Baer, J., & Monet, D. G. 2010, Icarus, 210, 158CrossRefGoogle Scholar
Chesley, S. R., Farnocchia, D., Nolan, M. C., et al. 2014, Icarus, 235, 5Google Scholar
Chesley, S., Farnocchia, D., Pravec, P., & Vokrouhlicky, D. 2015, IAU General Assembly, 22, 48872Google Scholar
Chodas, P. W. 1999, BAAS, 31, 1117Google Scholar
Chodas, P. W. 2012, LPI Contributions, 1667, 6471Google Scholar
Farnocchia, D., Chesley, S. R., Vokrouhlický, D., et al. 2013a, Icarus, 224, 1Google Scholar
Farnocchia, D., Chesley, S. R., Chodas, P. W., et al. 2013b, Icarus, 224, 192CrossRefGoogle Scholar
Farnocchia, D. & Chesley, S. R. 2014, Icarus, 229, 321CrossRefGoogle Scholar
Farnocchia, D., Chesley, S. R., Tholen, D. J., & Micheli, M. 2014, Celestial Mechanics and Dynamical Astronomy, 119, 301Google Scholar
Farnocchia, D., Chesley, S. R., & Micheli, M. 2015a, Icarus, 258, 18Google Scholar
Farnocchia, D., Chesley, S. R., Milani, A., Gronchi, G. F., & Chodas, P. W. 2015b, Asteroids IV, 813Google Scholar
Farnocchia, D., Chesley, S. R., Chamberlin, A. B., & Tholen, D. J. 2015c, Icarus, 245, 94Google Scholar
Giorgini, J. D., Benner, L. A. M., Ostro, S. J., Nolan, M. C., & Busch, M. W. 2008, Icarus, 193, 1CrossRefGoogle Scholar
Giorgini, J. D., Ostro, S. J., Benner, L. A. M., et al. 2002, Science, 296, 132Google Scholar
Grav, T., Jedicke, R., Denneau, L., et al. 2011, PASP, 123, 423Google Scholar
Gronchi, G. F. 2005, Celestial Mechanics and Dynamical Astronomy, 93, 295Google Scholar
Hestroffer, D. 2015, IAU General Assembly, 23, 712Google Scholar
Jones, R. L., Chesley, S. R., Connolly, A. J., et al. 2009, Earth Moon and Planets, 105, 101CrossRefGoogle Scholar
Kizner, W. 1961, Planet. Space Sci., 7, 125Google Scholar
Marsden, B. G. 1998, IAU Circ., 6837, 1Google Scholar
Milani, A., Chesley, S. R., & Valsecchi, G. B. 1999, A&A, 346, L65Google Scholar
Milani, A., Sansaturio, M. E., Tommei, G., Arratia, O., & Chesley, S. R. 2005a, A&A, 431, 729Google Scholar
Milani, A., Chesley, S. R., Sansaturio, M. E., Tommei, G., & Valsecchi, G. B. 2005b, Icarus, 173, 362Google Scholar
Milani, A., Chesley, S. R., Sansaturio, M. E., et al. 2009, Icarus, 203, 460CrossRefGoogle Scholar
Muinonen, K. & Bowell, E. 1993, Icarus, 104, 255Google Scholar
Nugent, C. R., Margot, J. L., Chesley, S. R., & Vokrouhlický, D. 2012, AJ, 144, 60CrossRefGoogle Scholar
Öpik, E. J. 1951, Proc. R. Irish Acad. Sect. A, 54, 165Google Scholar
Öpik, E. J. 1976, Amsterdam; New York: Elsevier Scientific Pub. Co., 1976.Google Scholar
Spoto, F., Milani, A., Farnocchia, D., et al. 2014, A&A, 572, A100Google Scholar
Valsecchi, G. B., Milani, A., Gronchi, G. F., & Chesley, S. R. 2003, A&A, 408, 1179Google Scholar
Virtanen, J., Muinonen, K., & Bowell, E. 2001, Icarus, 154, 412Google Scholar
Vokrouhlický, D., Chesley, S. R., & Matson, R. D. 2008, AJ, 135, 2336Google Scholar
Vokrouhlický, D., Farnocchia, D., Čapek, D., et al. 2015, Icarus, 252, 277CrossRefGoogle Scholar
Yeomans, D., Chodas, P., Muinonen, K., et al. 1998, IAU Circ., 6879, 3Google Scholar