Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T05:43:06.280Z Has data issue: false hasContentIssue false

The IMF in the Galactic Disk and Bulge are Indistinguishable

Published online by Cambridge University Press:  02 August 2018

Christopher Wegg
Affiliation:
MPI für Extraterrestrische Physik, Giessenbachstrasse, 85748 Garching, Germany. email: wegg@mpe.mpg.de
Ortwin Gerhard
Affiliation:
MPI für Extraterrestrische Physik, Giessenbachstrasse, 85748 Garching, Germany. email: wegg@mpe.mpg.de
Matthieu Portail
Affiliation:
MPI für Extraterrestrische Physik, Giessenbachstrasse, 85748 Garching, Germany. email: wegg@mpe.mpg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have measured the IMF of the inner Galaxy using ~3000 OGLE-III microlensing events. Each event’s timescale depends on both the lens mass, and the velocities and distances of the lens and source. New dynamical models were used provide the distribution of distances and velocities, and thereby measure the lens mass distribution. Using a power-law or log-normal parameterisation the resultant IMF is indistinguishable from local measurements by Kroupa or Chabrier respectively. The lenses lie in the inner Galaxy where the stars are mostly ~10 Gyr old and formed on a fast α-element enhanced timescale thereby constraining IMF variability with the properties of the collapsing gas cloud. Furthermore microlensing measures the stellar mass budget, including dark remnants, to low mass. Stars contribute most of the mass in the inner Galaxy with a low fraction remaining for dark matter. Reconciling this with local dark matter estimates requires a core or shallow cusp in its profile.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Bastian, N., Covey, K. R., & Meyer, M. R. 2010, ARAA, 48, 339Google Scholar
Bensby, T., Feltzing, S., Gould, A., et al. 2017, eprint arXiv:1702.02971Google Scholar
Bochanski, J. J., Hawley, S. L., Covey, K. R., et al. 2010, AJ, 139, 2679Google Scholar
Calamida, A., Sahu, K. C., Casertano, S., et al. 2015, ApJ, 810, 8Google Scholar
Calchi Novati, S., De Luca, F., Jetzer, P., Mancini, L., & Scarpetta, G. 2008, A&A, 480, 723Google Scholar
Chabrier, G. 2005, in The IMF 50 Years Later (Dordrecht: Springer Netherlands), 41Google Scholar
Cole, D. R. & Binney, J. 2017, MNRAS, 465, 798Google Scholar
Guszejnov, D., Hopkins, P. F., & Ma, X. 2017, eprint arXiv:1702.04431Google Scholar
Kroupa, P. 2001, MNRAS, 322, 231Google Scholar
Kunder, A., Koch, A., Michael Rich, R., et al. 2012, AJ, 143, 57Google Scholar
Matteucci, F. 2014, Volume 37 Saas-Fee Advanced Course (Springer Berlin Heidelberg), 145Google Scholar
Mróz, P., Udalski, A., Skowron, J., et al. 2017, Nature, 65, 1Google Scholar
Ness, M., Freeman, K., Athanassoula, E., et al. 2013, MNRAS, 432, 2092Google Scholar
Piffl, T., Binney, J., McMillan, P. J., et al. 2014, MNRAS, 445, 3133Google Scholar
Portail, M., Gerhard, O., Wegg, C., & Ness, M. 2017, MNRAS, 465, 1621 (P17)Google Scholar
Sumi, T. & Penny, M. T. 2016, ApJ, 827, 139Google Scholar
van Dokkum, P. G. & Conroy, C. 2012, ApJ, 760, 70Google Scholar
Wegg, C. & Gerhard, O. 2013, MNRAS, 435, 1874Google Scholar
Wegg, C., Gerhard, O., & Portail, M. 2015, MNRAS, 450, 4050Google Scholar
Wegg, C., Gerhard, O., & Portail, M. 2016, MNRAS, 463, 557Google Scholar
Wegg, C., Gerhard, O., & Portail, M. 2017, ApJ, 843, L5Google Scholar
Wyrzykowski, Ł., Rynkiewicz, A. E., Skowron, J., et al. 2015, ApJS, 216, 12Google Scholar