Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T00:57:09.849Z Has data issue: false hasContentIssue false

How to take into account the relativistic effects in dynamical studies of comets

Published online by Cambridge University Press:  06 April 2010

Julia Venturini
Affiliation:
Departamento de Astronomía, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay email: jventurini@fisica.edu.uy
Tabaré Gallardo
Affiliation:
Departamento de Astronomía, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay email: gallardo@fisica.edu.uy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Comet-like orbits with low perihelion distances tend to be affected by relativistic effects. In this work we discuss the origin of the relativistic corrections, how they affect the orbital evolution and how to implement these corrections in a numerical integrator. We also propose a model that mimics the principal relativistic effects and, contrary to the original “exact” formula, has low computational cost. Our model is appropriated for numerical simulations but not for precise ephemeris computations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Anderson, J. D., Esposito, P. B., Martin, W., & Muhlemsn, D. O. 1975, ApJ, 200, 221CrossRefGoogle Scholar
Benitez, F. & Gallardo, T., 2008, Celest. Mech. and Dyn. Ast., 101, 289CrossRefGoogle Scholar
Brumberg, V., 1991, Essential Relativistic Celestial Mechanics. (London: Adam Hilger)Google Scholar
Calura, M., Fortini, P., & Montanari, E. 1997, Phys. Rev. D, 56, 4782CrossRefGoogle Scholar
Iorio, L. 2005a, A&A, 431, 385Google Scholar
Iorio, L. 2005b, A&A, 433, 385Google Scholar
Iorio, L. 2007, Ap&SS, 312, 331Google Scholar
Nobili, A. & Roxburgh, I. 1986, in: Kovalevsky, J. & Brumberg, V. A. (eds.), Relativity in Celestial Mechanics and Astronomy, p. 105CrossRefGoogle Scholar
Quinn, T., Tremaine, S., & Duncan, M. 1991, AJ, 101, 2287CrossRefGoogle Scholar
Rubincam, D. P. 1977, Celest. Mech., 15, 21CrossRefGoogle Scholar
Saha, P. & Tremaine, S. 1992, AJ, 104, 1633CrossRefGoogle Scholar
Saha, P. & Tremaine, S. 1994, AJ, 108, 1962CrossRefGoogle Scholar
Shahid-Saless, B. & Yeomans, D. 1994, AJ, 107, 1885CrossRefGoogle Scholar
Soffel, M. 1989, Relativity in Astrometry, Celestial Mechanics and Geodesy, (Berlin: Springer)CrossRefGoogle Scholar
Soffel, M., Klioner, S. A., Petit, G., et al. 2003, AJ, 126, 6, 2687CrossRefGoogle Scholar
Vitagliano, A. 1997, Celest. Mech. and Dyn. Ast., 66, 293CrossRefGoogle Scholar