Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T16:58:03.947Z Has data issue: false hasContentIssue false

How to accurately model IR spectra of nanosized silicate grains

Published online by Cambridge University Press:  12 October 2020

Joan Mariñoso Guiu
Affiliation:
Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB). Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain email: jmaringu11@alumnes.ub.edu
Antoni Macià
Affiliation:
Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB). Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain email: jmaringu11@alumnes.ub.edu
Stefan T. Bromley
Affiliation:
Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB). Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain email: jmaringu11@alumnes.ub.edu Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We assess the accuracy of various computational methods for obtaining infrared (IR) spectra of nanosized silicate dust grains directly from their atomistic structure and atomic motions. First, IR spectra for a selection of small nanosilicate clusters with a range of sizes and chemical compositions are obtained within the harmonic oscillator approximation employing density functional theory (DFT) based quantum chemical calculations. To check if anharmonic effects play a significant role in the IR spectra of these nanoclusters, we further obtain their IR spectra from finite temperature DFT-based ab initio molecular dynamics (AIMD). Finally, we also study the effect of temperature on the broadening of the obtained IR spectra peaks in larger nanosilicate grains with a range of crystallinities. In this case, less computationally costly classical molecular dynamics simulations are necessary due to the large number of atoms involved. Generally, we find that although DFT-based methods are more accurate, surprisingly good IR spectra can also be obtained from classical molecular dynamics calculations.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Henning, T 2010, ARA&A, 48, 21 CrossRefGoogle Scholar
Li, A. & Draine, B. T. 2001, ApJ, 500, L213 CrossRefGoogle Scholar
Macià, A., Lazauskas, T., Woodley, S. M., & Bromley, S. T. 2019, ACS Earth and Space Chemistry, 3, 2390 Google Scholar
Plane, J. M. C 2001, Chem. Soc. Rev., 41, 6507 CrossRefGoogle Scholar
Zamirri, L., Macià, A., Mariñoso, J., Ugliengo, P., & Bromley, S. T. 2019, ACS Earth and Space Chemistry, 3, 2323 CrossRefGoogle Scholar