Published online by Cambridge University Press: 27 February 2023
Situation with highly magnetized neutron stars in binary systems is not yet certain. On the one hand, all best studied magnetars seem to be isolated objects. On the other, there are many claims based on model-dependent analysis of spin properties or/and luminosity of neutron stars in X-ray binaries in favour of large fields. In addition, there are a few results suggesting a magnetar-like activity of neutron stars in close binary systems. Most of theoretical considerations do not favour even existence, not speaking about active decay, of magnetar-scale fields in neutron stars older than ∼106 yrs. However, alternative scenarios of the field evolution exist. I provide a brief review of theoretical and observational results related to the presence of neutron stars with large magnetic field in binaries and discuss perspectives of future studies.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.