Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T06:27:56.225Z Has data issue: false hasContentIssue false

A hierarchical bayesian dust SED model and its application to the nearby universe

Published online by Cambridge University Press:  10 June 2020

Frédéric Galliano*
Affiliation:
AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, F-91191 Gif-sur-Yvette, France email: frederic.galliano@cea.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, I review several dust evolution studies based on the DustPedia nearby galaxy sample. I first present the dust spectral energy distribution model, implementing a hierarchical Bayesian method, that we have developed. I then discuss the dust evolution trends we have derived among (integrated) and within (resolved) galaxies. In particular, we show that the trend of dust-to-gas ratio with metallicity is clearly non-linear, indicating the need for grain growth in the interstellar medium. Our trend is closer to the one derived with damped Lyα systems than what was suggested by previous studies. We finally demonstrate the universal processing of small amorphous carbon grains by stellar photons.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Clark, C. J. R., Verstocken, S., Bianchi, S., Fritz, J., Viaene, S., Smith, M. W. L., Baes, M., Casasola, V., et al. 2018, A&A, 609, A37Google Scholar
Dale, D. A., Helou, G., Contursi, A., Silbermann, N. A., & Kolhatkar, S. 2001, ApJ, 549, 215CrossRefGoogle Scholar
Davies, J. I, Baes, M., Bianchi, S., Jones, A., Madden, S., Xilouris, M., Bocchio, M., Casasola, V., et al. 2017, PASP, 129, 044102CrossRefGoogle Scholar
De Cia, A., Ledoux, C., Mattsson, L., Petitjean, P., Srianand, R., Gavignaud, I. & Jenkins, E. B. 2016, A&A, 596, A97Google Scholar
De Vis, P., Gomez, H. L., Schofield, S. P., Maddox, S., Dunne, L., Baes, M., Cigan, P., Clark, C. J. R., et al. 2017, MNRAS, 471, 174310.1093/mnras/stx981CrossRefGoogle Scholar
De Vis, P., Jones, A., Viaene, S., Casasola, V., Clark, C. J. R., Baes, M., Bianchi, S., Cassara, L. P., et al. 2019, A&A, 623, A5Google Scholar
Galliano, F. 2018, MNRAS, 476, 144510.1093/mnras/sty189CrossRefGoogle Scholar
Galliano, F., De Vis, P., Galametz, M., et al. 2019, in prep.Google Scholar
Galliano, F., Galametz, M., & Jones, A. P. 2018, ARA&A, 56, 673CrossRefGoogle Scholar
Jones, A. P., Köhler, M., Ysard, N., Bocchio, M., & Verstraete, L. 2017, A&A, 602, A46Google Scholar
Madden, S. C., Rémy-Ruyer, A., Galametz, M., Cormier, D., Lebouteiller, V., Galliano, F., Hony, S., Bendo, G. J., et al. 2013, PASP, 125, 600CrossRefGoogle Scholar
Rémy-Ruyer, A., Madden, S. C., Galliano, F., Hony, S., Sauvage, M., Bendo, G. J., Roussel, H., Pohlen, M., et al. 2013, A&A, 557, A95Google Scholar
Shetty, R., Kauffmann, J., Schnee, S., & Goodman, A. A. 2009, ApJ, 696, 67610.1088/0004-637X/696/1/676CrossRefGoogle Scholar