Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T13:57:02.671Z Has data issue: false hasContentIssue false

Helioseismic insights into the generation and evolution of the Sun’s internal magnetic field

Published online by Cambridge University Press:  24 September 2020

Anne-Marie Broomhall
Affiliation:
Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, CV4 7AL email: a-m.broomhall@warwick.ac.uk
René Kiefer
Affiliation:
Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, CV4 7AL email: a-m.broomhall@warwick.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Properties of helioseismic acoustic oscillations (p modes) are modified by flows and magnetic fields in the solar interior, with frequencies, amplitudes and damping rates all varying systematically through the solar cycle. Crucially, now, we have a long enough baseline of helioseismic data to compare of the different activity cycles. We review recent efforts along these lines, from the impact of near-surface magnetic fields on p-mode frequencies to the evolution of the torsional oscillation and meridional circulation. We show that each activity cycle for which we have helioseismic data is slightly different in terms of the relationship between p mode frequencies and atmospheric proxies of activity, and in terms of the rotation and meridional circulation flows. However, many challenges remain, crucially including our ability to constrain flows and magnetic fields in the deep solar interior.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Baldner, Charles S. & Basu, Sarbani 2008, ApJ, 686, 1349CrossRefGoogle Scholar
Basu, Sarbani, Broomhall, Anne-Marie, Chaplin, William J. & Elsworth, Yvonne 2012, ApJ, 758, 43Google Scholar
Basu, Sarbani 2016, LRSP, 13, 2Google Scholar
Bazilevskaya, G., Broomhall, A.-M., Elsworth, Y. & Nakariakov, V. M. 2014, Space Sci. Rev., 186, 359CrossRefGoogle Scholar
Böning, Vincent G. A., Roth, Markus, Jackiewicz, Jason & Kholikov, Shukur 2017, ApJ, 845, 2Google Scholar
Broomhall, A. -M. 2017, Sol. Phys., 292, 67CrossRefGoogle Scholar
Chaplin, W. J., Elsworth, Y., Howe, R., Isaak, G. R., McLeod, C. P., Miller, B. A. & New, R. 1996, MNRAS, 280, 1162CrossRefGoogle Scholar
Charbonneau, Paul 2010, LRSP, 7, 3Google Scholar
Chen, Ruizhu & Zhao, Junwei 2017, ApJ, 849, 144CrossRefGoogle Scholar
Christensen-Dalsgaard, Jørgen & Berthomieu, Gabrielle 1991, In: Solar interior and atmosphere, Tucson, AZ, University of Arizona Press, 401Google Scholar
Davies, G. R., Chaplin, W. J., Elsworth, Y. P. & Hale, S. J. 2014, MNRAS, 441, 3009CrossRefGoogle Scholar
Giles, P. M., Duvall, T. L., Scherrer, P. H., & Bogart, R. S. 1997, Nature, 390, 52CrossRefGoogle Scholar
Goldreich, P., Murray, N. & Kumar, P. 1994, ApJ, 424, 466CrossRefGoogle Scholar
Gough, D.O. 1990, In: Osaki, Y., Shibahashi, H. (eds.) Progress of Seismology of the Sun and Stars, Lecture Notes in Physics 367, Springer, Berlin, 283Google Scholar
Gizon, Laurent & Birch, Aaron C. 2005, LRSP, 2, 6Google Scholar
Hale, S. J., Howe, R., Chaplin, W. J., Davies, G. R. & Elsworth, Y. P. 2016, Sol. Phys., 291, 1CrossRefGoogle Scholar
Hathaway, David H. 2015, LRSP, 12, 4Google Scholar
Howe, R., Komm, R.W., & Hill, F. 2002, ApJ, 580, 1172CrossRefGoogle Scholar
Howe, R., Davies, G. R., Chaplin, W. J., Elsworth, Y., Basu, S., Hale, S. J., Ball, W. H. & Komm, R. W. 2017, MNRAS, 470, 1935CrossRefGoogle Scholar
Howe, R., Chaplin, W. J., Davies, G. R., Elsworth, Y., Basu, S., & Broomhall, A. -M. 2018, MNRAS, 480, L79CrossRefGoogle Scholar
Howe, R., Hill, F., Komm, R., Chaplin, W. J., Elsworth, Y., Davies, G. R., Schou, J. & Thompson, M. J. 2018, ApJL, 865, L5CrossRefGoogle Scholar
Keith-Hardy, J. Z., Tripathy, S. C., Jain, K. 2019, ApJ, 877, 148CrossRefGoogle Scholar
Kiefer, René, Schad, Ariane & Roth, Markus 2017, ApJ, 846, 162CrossRefGoogle Scholar
Kiefer, René & Roth, Markus 2018, ApJ, 854, 74CrossRefGoogle Scholar
Kiefer, René, Komm, Rudi, Hill, Frank, Broomhall, Anne-Marie & Roth, Markus 2018, Sol. Phys, 293, 151Google Scholar
Komm, R., Howe, R. & Hill, F. 2018, Sol. Phys, 293, 145CrossRefGoogle Scholar
Kosovichev, Alexander G. & Pipin, Valery V. 2019, ApJL, 871, L20CrossRefGoogle Scholar
Libbrecht, K.G. & Woodard, M.F. 1990, Nature, 345, 779CrossRefGoogle Scholar
Liang, Zhi-Chao, Gizon, Laurent, Birch, Aaron C., Duvall, Thomas L. & Rajaguru, S. P. 2018, A&A, 619, 99Google Scholar
Lund, Mikkel Nørup, Kjeldsen, Hans, Christensen-Dalsgaard, Jørgen, Handberg, Rasmus & Silva Aguirre, Victor 2014, ApJ, 782, 2CrossRefGoogle Scholar
Mandal, K., Hanasoge, S. M., Rajaguru, S. P. & Antia, H. M. 2018, ApJ, 863, 39CrossRefGoogle Scholar
Mitra-Kraev, U. & Thompson, M. J. 2007, AN, 328, 1009Google Scholar
Parker, E. N. 1955, ApJ, 122, 293CrossRefGoogle Scholar
Salabert, D., Garca, R. A. & Turck-Chièze, S. 2015, A&A, 578, 137Google Scholar