Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T22:56:59.950Z Has data issue: false hasContentIssue false

Heating from Electron Captures by Nuclei in Magnetar Crusts

Published online by Cambridge University Press:  27 February 2023

Nicolas Chamel
Affiliation:
Institute of Astronomy and Astrophysics, Université Libre de Bruxelles, CP 226, Boulevard du Triomphe, B-1050 Brussels, Belgium email: nicolas.chamel@ulb.be
Anthea Francesca Fantina
Affiliation:
Institute of Astronomy and Astrophysics, Université Libre de Bruxelles, CP 226, Boulevard du Triomphe, B-1050 Brussels, Belgium email: nicolas.chamel@ulb.be Grand Accélérateur National d’Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Boulevard Henri Becquerel, 14076 Caen, France email: anthea.fantina@ganil.fr
Lami Suleiman
Affiliation:
N. Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, PL-00-716 Warszawa, Poland emails lsuleiman@camk.edu.pl (L.S.); jlz@camk.edu.pl (J.-L. Z.); haensel@camk.edu.pl (P.H.) Laboratoire Univers et Théories, Observatoire de Paris, Université PSL, Université de Paris, CNRS, F-92195 Meudon, France
Julian-Leszek Zdunik
Affiliation:
N. Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, PL-00-716 Warszawa, Poland emails lsuleiman@camk.edu.pl (L.S.); jlz@camk.edu.pl (J.-L. Z.); haensel@camk.edu.pl (P.H.)
Pawel Haensel
Affiliation:
N. Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, PL-00-716 Warszawa, Poland emails lsuleiman@camk.edu.pl (L.S.); jlz@camk.edu.pl (J.-L. Z.); haensel@camk.edu.pl (P.H.)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The decay of the magnetic field in the interior of a magnetar may trigger electron captures by nuclei in the stellar crust, thus providing an internal source of heating. In turn, the onset of electron captures and the heat released are altered by the magnetic field due to the Landau–Rabi quantization of electron motion. The loss of magnetic pressure might also lead to pycnonuclear fusions of the lightest elements. The maximum amount of heat that can be possibly released by each reaction and their location are calculated using nuclear data from both experiments and theoretical predictions of the Brussels-Montreal models based on self-consistent Hartree-Fock-Bogoliubov calculations. Results are found to be consistent with those inferred empirically by comparing neutron-star cooling simulations with observed thermal luminosity of soft gamma-ray repeaters and anomalous X-ray pulsars.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Beloborodov, A.M. & Li, X. 2016, ApJ, 833, 261 CrossRefGoogle Scholar
Chamel, N., Fantina, A.F., Zdunik, J.L., & Haensel, P. 2015, Phys. Rev. C, 91, 055803 Google Scholar
Chamel, N., Stoyanov, Z.K., Mihailov, L.M., Mutafchieva, Y.D., Pavlov, R.L., Velchev, C.J. 2015, Phys. Rev. C, 91, 065801 CrossRefGoogle Scholar
Chamel, N., Fantina, A.F., Zdunik, J.-L., Haensel, P. 2020, Phys. Rev. C, 102, 015804 Google Scholar
Chamel, N., Fantina, A.F., Suleiman, L., Zdunik, J.-L. & Haensel, P. 2021, Universe, 7(6), 193 CrossRefGoogle Scholar
Cooper, R.L., Kaplan, D.L. 2010, ApJ (Letters), 708, L80 Google Scholar
De Grandis, D., Turolla, R.; Wood, T.S., Zane, S., Taverna, R., & Gourgouliatos, K.N. 2020, ApJ 903, 40 CrossRefGoogle Scholar
Esposito, P., Rea, N., Israel, G.L. 2021, in: T.M. Belloni, M. M´endez & C. Zhang (eds.), Astrophysics and Space Science Library (Springer, Berlin/Heidelberg, Germany), p. 97 CrossRefGoogle Scholar
Goriely, S., Chamel, N., & Pearson, J.M. 2013, Phys. Rev. C, 88, 024308 CrossRefGoogle Scholar
Iida, K. & Sato, K. 1997, ApJ, 477, 294 CrossRefGoogle Scholar
Kaminker, A.D., Yakovlev, D.G., Potekhin, A.Y., Shibazaki, N., Shternin, P.S., & Gnedin, O.Y. 2006, MNRAS, 371, 477 CrossRefGoogle Scholar
Kaminker, A.D., Potekhin, A.Y., Yakovlev, D.G., & Chabrier, G. 2009, MNRAS, 395, 2257 CrossRefGoogle Scholar
Mutafchieva, Y.D., Chamel, N., Stoyanov, Z.K., Pearson, J.M., & Mihailov, L.M. 2019, Phys. Rev. C, 99,055805CrossRefGoogle Scholar
Salpeter, E.E. 1954, Aust. J. Phys., 7, 373 CrossRefGoogle Scholar
Wang, M., Audi, G., Kondev, F.G., Huang, W.J., Naimi, S., & Xu, X. 2017, Chin. Phys. C, 41, 030003Google Scholar