Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-16T17:06:46.575Z Has data issue: false hasContentIssue false

H I Imaging Surveys: Gas and Galaxy Evolution in Different Environments

Published online by Cambridge University Press:  05 December 2011

Jacqueline van Gorkom*
Affiliation:
Department of Astronomy, Columbia University, New York, NY 10027, USA email: jvangork@astro.columbia.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Our understanding of the formation and evolution of galaxies and the large scale structure has advanced enormously over the last decade, thanks to an impressive synergy between theoretical and observational efforts. While the growth of the dark matter component seems well understood, the physics of the gas, during its accretion, removal and/or depletion is less well understood. Increasingly large scale optical surveys are tracing out the cosmic web of filaments and voids and mathematical tools have been developed to describe these structures and identify galaxies in specific environments. H I imaging surveys begin to answer the question: how do galaxies get and lose their gas. The best evidence for ongoing gas accretion is found in the lowest density environments, while removal of gas in the highest density environments stops star formation and reddens the galaxies. Although current H I emission surveys are limited to redshifts less than 0.2, this is where the LSS is best defined and much can be learned in the local universe.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Boomsma, R., Oosterloo, T. A., Fraternali, F., vanAAAAderAAAAHulst, J. M., & Sancisi, R. 2008, A&A, 490, 555Google Scholar
Chung, A., vanAAAAGorkom, J. H., Kenney, J. D. P., & Vollmer, B. 2007, ApJ 695, L115CrossRefGoogle Scholar
Chung, A., vanAAAAGorkom, J. H., Kenney, J. P. D., Crowl, H., & Vollmer, B. 2009, AJ, 138, 1741Google Scholar
Crowl, H. H. & Kenney, J. P. D. 2008 AJ, 136, 1623CrossRefGoogle Scholar
Crowl, H. H., Chung, A., Kenney, J. P. D., vanAAAAGorkom, J. H., Schiminovich, D., & Blanton, M. 2011, submittedGoogle Scholar
Kenney, J. D. P., vanAAAAGorkom, J. H., & Vollmer, B 2004, AJ, 127, 3361Google Scholar
Keres, D., Katz, N., Weinberg, D. H., & Dave, R. 2005, MNRAS, 363, 2CrossRefGoogle Scholar
Kormendy, J., Drory, N., bender, R., & Cornell, M.E., 2010 ApJ, 723, 54CrossRefGoogle Scholar
Kreckel, K., Platen, E., Aragon-calvo, M. A., vanAAAAGorkom, J. H., vanAAAAdeAAAAWeygaert, R., vanAAAAderAAAAHulst, J. M., Kovac, K., Yip, C.-W., & Peebles, P. J. E. 2011a, AJ, 141, 4Google Scholar
Kreckel, K., Peebles, P. J. E., vanAAAAGorkom, J. H., vanAAAAdeAAAAWeygaert, R., & vanAAAAderAAAAHulst, J. M. 2011b, AJ, in pressGoogle Scholar
Peebles, P. J. E. & Nusser, A. 2010, Nature, 465, 565CrossRefGoogle Scholar
Platen, E. 2010, PhD thesis, Univ of GroningenGoogle Scholar
Stanonik, K., Platen, E., Aragon-calvo, M. A., vanAAAAGorkom, J. H., vanAAAAdeAAAAWeygaert, R., vanAAAAderAAAAHulst, J. M., & peebles, P. J. E. 2009, ApJ, 696, L6CrossRefGoogle Scholar
Tonnesen, S., Bryan, G. L. & vanAAAAGorkom, J. H. 2007, ApJ, 671, 1434Google Scholar
Tonnesen, S. & Bryan, G. L. 2008, ApJ, 684, L9Google Scholar
Verheijen, et al. 2010, astroph:1009.0279Google Scholar
vanAAAAdeAAAAWeygaert, R. & Schaap, W. 2009, in Lecture Notes in Physics, Vol 665, eds. Martinez, , Saar, , Gonzales, , Pons-Borderia, (Berlin: Springer), 291Google Scholar
vanAAAAderAAAAHulst, J.M. & Sancisi, R., 1988 AJ, 95, 1354Google Scholar
Vollmer, B. 2009, A&A, 502, 427Google Scholar
White, S. D. M. & Rees, M. J. 1978, MNRAS, 183, 341Google Scholar