No CrossRef data available.
Published online by Cambridge University Press: 05 September 2012
H and He features in photospheric spectra have rarely been used to constrain the structure of Type IIb/Ib/Ic supernovae (SNe IIb/Ib/Ic). The lines have to be modelled with a detailed non-local-thermodynamic-equilibrium (NLTE) treatment, including effects uncommon in stars. Once this is done, however, one obtains valuable hints on the characteristics of progenitors and explosions (composition, explosion energy, . . .). We have extended a radiative transfer code to compute synthetic spectra of SNe IIb, Ib and Ic. Here, we discuss our first larger set of models, focusing on the question: How much H/He can be hidden (i.e. remain undetected in photospheric spectra) in SNe Ib/Ic? For the SNe studied (relatively low Mej = 1. . .3 M⊙), we find a limit of MHe ≲ 0.1 M⊙ in SNe Ic (no unambiguous He lines). Stellar evolution models for single stars normally always yield higher masses. We suggest that low- or moderate-mass SNe Ic result from efficient envelope stripping in binaries. We propose similar studies on H/He in high-mass and extremely aspherical SNe, and observations covering the region of He I λ 20581.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.