Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T00:01:56.940Z Has data issue: false hasContentIssue false

Gravitational lenses in hydrodynamical simulations

Published online by Cambridge University Press:  04 March 2024

Giulia Despali*
Affiliation:
Alma Mater Studiorum - Universitá di Bologna, Dipartimento di Fisica e Astronomia “Augusto Righi”, Via Gobetti 93/2, Bologna, Italy INAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, via Gobetti 93/3, I-40129, Bologna, Italy
Felix M. Heinze
Affiliation:
Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Straße 2, D-69120 Heidelberg, Germany
Claudio Mastromarino
Affiliation:
Universitá degli studi di Roma ‘Tor Vergata’, Via della Ricerca Scientifica, 1, 00133, Roma, Italy INFN-Sezione di Roma ‘Tor Vergata’, Via della Ricerca Scientifica, 1, 00133, Roma, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The gravitational lensing signal produced by a galaxy or a galaxy cluster is determined by its total matter distribution, providing us with a way to directly constrain their dark matter content. State-of-the-art numerical simulations successfully reproduce many observed properties of galaxies and can be used as a source of mock observations and predictions. Many gravitational lensing studies aim at constraining the nature of dark matter, discriminating between cold dark matter and alternative models. However, many past results are based on the comparison to simulations that did not include baryonic physics. Here we show that the presence of baryons can significantly alter the predictions: we look at the structural properties (profiles and shapes) of elliptical galaxies and at the inner density slope of subhaloes. Our results demonstrate that future simulations must model the interplay between baryons and alternative dark matter, to generate realistic predictions that could significantly modify the current constraints.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Adhikari, S., Banerjee, A., Boddy, K. K., Cyr-Racine, F.-Y., Desmond, H., Dvorkin, C., Jain, B., et al., 2022, arXiv, arXiv:2207.10638. doi: 10.48550/arXiv.2207.10638 CrossRefGoogle Scholar
Bolton, A. S., Burles, S., Koopmans, L. V. E., Treu, T., Gavazzi, R., Moustakas, L. A., Wayth, R., et al., 2008, ApJ, 682, 964. doi: 10.1086/589327 CrossRefGoogle Scholar
Buote, D. A., Jeltema, T. E., Canizares, C. R., Garmire, G. P., 2002, ApJ, 577, 183. CrossRefGoogle Scholar
Despali, G., Walls, L. G., Vegetti, S., Sparre, M., Vogelsberger, M., Zavala, J., 2022, MNRAS, 516, 4543. CrossRefGoogle Scholar
Heinze, F., Despali, G., Klessen, R., 2023, submitted to MNRAS.Google Scholar
Hezaveh, Y. D., Dalal, N., Marrone, D. P., Mao, Y.-Y., Morningstar, W., Wen, D., Blandford, R. D., et al., 2016, ApJ, 823, 37. CrossRefGoogle Scholar
Mastromarino, C., Despali, G., Moscardini, L., Robertson, A., Meneghetti, M., Maturi, M., 2023, MNRAS, 524, 1515. CrossRefGoogle Scholar
McDaniel, A., Jeltema, T., Profumo, S., 2021, JCAP, 2021, 020. doi: 10.1088/1475-7516/2021/05/020 CrossRefGoogle Scholar
Minor, Q., Gad-Nasr, S., Kaplinghat, M., Vegetti, S., 2021, MNRAS, 507, 1662. CrossRefGoogle Scholar
Nadler, E. O., Yang, D., Yu, H.-B., 2023, arXiv, arXiv:2306.01830. doi: 10.48550/arXiv.2306.01830 CrossRefGoogle Scholar
Nightingale, J. W., He, Q., Cao, X., Amvrosiadis, A., Etherington, A., Frenk, C. S., Hayes, R. G., et al., 2022, arXiv, arXiv:2209.10566. 10.48550/arXiv.2209.10566 Google Scholar
Peter, A. H. G., Rocha, M., Bullock, J. S., Kaplinghat, M., 2013, MNRAS, 430, 105.CrossRefGoogle Scholar
Pillepich, A., Springel, V., Nelson, D., Genel, S., Naiman, J., Pakmor, R., Hernquist, L., et al., 2018, MNRAS, 473, 4077. doi: 10.1093/mnras/stx2656 CrossRefGoogle Scholar
Pillepich, A., Nelson, D., Springel, V., Pakmor, R., Torrey, P., Weinberger, R., Vogelsberger, M., et al., 2019, MNRAS, 490, 3196. doi: 10.1093/mnras/stz2338 CrossRefGoogle Scholar
Robertson, A., Massey, R., Eke, V., Schaye, J., Theuns, T., 2021, MNRAS, 501, 4610. CrossRefGoogle Scholar
Sonnenfeld, A., Gavazzi, R., Suyu, S. H., Treu, T., Marshall, P. J., 2013, ApJ, 777, 97. doi: 10.1088/0004-637X/777/2/97 CrossRefGoogle Scholar
Vegetti, S., Koopmans, L. V. E., Bolton, A., Treu, T., Gavazzi, R., 2010, MNRAS, 408, 1969. CrossRefGoogle Scholar
Vegetti, S., Lagattuta, D. J., McKean, J. P., Auger, M. W., Fassnacht, C. D., Koopmans, L. V. E., 2012, Natur, 481, 341.CrossRefGoogle Scholar