Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T21:30:48.514Z Has data issue: false hasContentIssue false

Global-scale wreath-building dynamos in stellar convection zones

Published online by Cambridge University Press:  12 August 2011

Benjamin P. Brown
Affiliation:
Dept. Astronomy, University of Wisconsin, Madison, WI 53706-1582 email: bpbrown@astro.wisc.edu Center for Magnetic Self Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin, Madison, WI 537066-1582
Matthew K. Browning
Affiliation:
Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S3H8Canada
Allan Sacha Brun
Affiliation:
DSM/IRFU/SAp, CEA-Saclay and UMR AIM, CEA-CNRS-Université Paris 7, 91191 Gif-sur-Yvette, France
Mark S. Miesch
Affiliation:
High Altitude Observatory, NCAR, Boulder, CO 80307-3000
Juri Toomre
Affiliation:
JILA and Dept. Astrophysical & Planetary Sciences, University of Colorado, Boulder, CO 80309-0440
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

When stars like our Sun are young they rotate rapidly and are very magnetically active. We explore dynamo action in rapidly rotating suns with the 3-D MHD anelastic spherical harmonic (ASH) code. The magnetic fields built in these dynamos are organized on global-scales into wreath-like structures that span the convection zone. Wreath-building dynamos can undergo quasi-cyclic reversals of polarity and such behavior is common in the parameter space we have been able to explore. These dynamos do not appear to require tachoclines to achieve their spatial or temporal organization. Wreath-building dynamos are present to some degree at all rotation rates, but are most evident in the more rapidly rotating simulations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Brown, B. P., Browning, M. K., Brun, A. S., Miesch, M. S., & Toomre, J. 2008, ApJ, 689, 1354CrossRefGoogle Scholar
Brown, B. P., Browning, M. K., Brun, A. S., Miesch, M. S., & Toomre, J. 2010a, ApJ, 711, 424CrossRefGoogle Scholar
Brown, B. P., Miesch, M. S., Browning, M. K., Brun, A. S., & Toomre, J. 2010b, ApJ, submittedGoogle Scholar
Browning, M. K. 2008, ApJ, 676, 1262CrossRefGoogle Scholar
Brun, A. S., Miesch, M. S., & Toomre, J. 2004, ApJ, 614, 1073CrossRefGoogle Scholar
Clune, T. L., Elliott, J. R., Glatzmaier, G. A., Miesch, M. S., & Toomre, J. 1999, Parallel Computing, 25, 361CrossRefGoogle Scholar
Ghizaru, M., Charbonneau, P., & Smolarkiewicz, P. K. 2010, ApJ, 715, L133CrossRefGoogle Scholar
Käpylä, P. J., Korpi, M. J., Brandenburg, A., Mitra, D., & Tavakol, R. 2010, Astronomische Nachrichten, 331, 73CrossRefGoogle Scholar
Miesch, M. S., Elliott, J. R., Toomre, J., Clune, T. L., Glatzmaier, G. A., & Gilman, P. A. 2000, ApJ, 532, 593CrossRefGoogle Scholar
Mitra, D., Tavakol, R., Käpylä, P. J., & Brandenburg, A. 2010, ApJ, 719, L1CrossRefGoogle Scholar
Pizzolato, N., Maggio, A., Micela, G., Sciortino, S., & Ventura, P. 2003, A&A, 397, 147Google Scholar