Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T01:07:07.104Z Has data issue: false hasContentIssue false

Global magnetic field cycle evolution and prominence eruptions

Published online by Cambridge University Press:  06 January 2014

Irina A. Bilenko*
Affiliation:
Moscow M. V. Lomonosov State Univercity, Sternberg Astronomiczl Institute, Moscow, Russia email: bilenko@sai.msu.ru
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A comparison of changes in the structure of the global solar magnetic field and that in the prominence parameters, in solar cycles 21–23, are presented. It is proposed that the observed global magnetic field structure changes and periodicities in the mean solar magnetic field are the result of the excitation of large-scale Rossby waves. The changes in the prominence parameters are assumed to be the result of the global magnetic field structure changes, which may be triggered or modulated quasi-periodically by large-scale Rossby waves.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Altschuler, M. D. & Newkirk, G. 1969, Solar Phys., 9, 131Google Scholar
Bilenko, I. A. 2012, Geomagnetism and Aeronomy, 52, 1005CrossRefGoogle Scholar
Filippov, B. P., Zagnetko, A. M., Ajabshirizadeh, A., & Den, O. G. 2006, Sol. Syst. Res., 40, 319CrossRefGoogle Scholar
Gilman, P. A. 1969, Solar Phys., 8, 316Google Scholar
Gnevyshev, M. N. 1963, AZh, 40, 401Google Scholar
Gnevyshev, M. N. & Makarov, V. I. 1985, Solar Phys., 95, 189Google Scholar
Gopalswamy, N., Shimojo, M., Lu, W., Yashiro, S., Shibasaki, K., & Howard, R. A. 2003, ApJ, 586, 562CrossRefGoogle Scholar
Gopalswamy, N., Yashiro, S., Mäkelä, P., Michalek, G., Shibasaki, K., & Hathaway, D. H. 2012, ApJ, 750, L42Google Scholar
Guseva, S. A., Kim, G.-D. & Tlatov, A. G. 2007, in proc. “Multiwavelength investigations of the Sun and the problems in solar activity” SAO RAN, publ. Sankt-Peterburg, p. 269Google Scholar
Hoeksema, J. T., Wilcox, J. M., & Scherrer, P. H. 1983, JGR, 88, 9910Google Scholar
Hori, K. & Culhane, J. L. 2002, A&A, 382, 666Google Scholar
Hyder, C. L. 1965, ApJ, 141, 272Google Scholar
Lorenc, M., Pastorek, L., & Rybanský, M. 2003, in proc. ISCS 2003 Symposium "Solar Varuability as an Input to the Earth's Environment", Tatranská Lomnica, Slovakia, p. 129Google Scholar
Makarov, V. I. & Sivaraman, K. R. 1989, Solar Phys., 123, 367Google Scholar
Martin, S. F. 1998, Solar Phys., 182, 107CrossRefGoogle Scholar
Munro, R. H., Gosling, J. T., Hildner, E., MacQueen, R. M., Poland, A. I., & Ross, C. L. 1979, Solar Phys., 61, 201Google Scholar
Schatten, K. N., Wilcox, J. M., & Ness, N. F. 1969, Solar Phys., 6, 442Google Scholar
Schmieder, B., Bommier, V., Kitai, R., Matsumoto, T., Ishii, T. T., Hagino, M., Li, H., & Golub, L. 2008, Solar Phys., 247, 321Google Scholar
Shimojo, M., Yokoyama, T., Asai, A., Nakajima, H., & Shibasaki, K. 2006, PASJ, 58, 85Google Scholar
Svetska, Z. 1986, The Lower Atmosphere of Solar Flares, NSO/Sac Peak Pub., 332.Google Scholar
Tandberg-Hanssen, E. 1995 The Nature of Solar Prominences, Kluwer Acad., Norwell, Mass.Google Scholar
Tikhomolov, E. 1995, Solar Phys., 156, 205Google Scholar
Tikhomolov, E. & Mordvinov, V. I. 1996, ApJ, 472, 389Google Scholar
Zaqarashvili, T. V., Carbonell, M., Oliver, R., & Ballester, J. L. 2010a, ApJ, 709, 749Google Scholar
Zaqarashvili, T. V., Carbonell, M., Oliver, R., & Ballester, J. L. 2010b, Ap. Lett., 724, L95Google Scholar