Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T11:05:49.406Z Has data issue: false hasContentIssue false

Gas-Star Formation Cycle in Nearby Galaxies

Published online by Cambridge University Press:  09 June 2023

Hsi-An Pan
Affiliation:
Department of Physics, Tamkang University, No.151, Yingzhuan Road, Tamsui District, New Taipei City 251301, Taiwan email: hapan@gms.tku.edu.tw
Eva Schinnerer
Affiliation:
Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
Annie Hughes
Affiliation:
CNRS, IRAP, Av. du Colonel Roche BP 44346, F-31028 Toulouse cedex 4, France
Adam Leroy
Affiliation:
Department of Astronomy, The Ohio State University, 140 West 18th Ave, Columbus, OH 43210, USA
Brent Groves
Affiliation:
International Centre for Radio Astronomy Research, The University of Western Australia, Crawley, WA 6009, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Star formation, from cold giant molecular clouds to diverse population of stars, is a complex process involving a wide variety of physical processes. In this work, we constrain the link between the gas-star formation cycle and several secular and environmental probe of galaxies. Specifically, we quantify the spatial correlation between molecular gas and star-forming regions for 49 nearby galaxies using the ALMA and narrowband-Hα imaging from the PHANGS survey. At the resolution (150 pc) at which the individual molecular clouds and star-forming regions can be identified, we find that molecular clouds and star-forming regions do not necessarily coexist. The decoupled molecular clouds and star-forming regions are a signature of evolutionary cycling and feedback of the star formation process. Therefore, the impact of galactic-scale conditions and environments must be considered for a complete understanding of how stars form in galaxies and how this process influences the evolution of the host galaxies.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bigiel, F., Leroy, A., Walter, F., et al. 2008, AJ, 136, 2846. doi: 10.1088/0004-6256/136/6/2846 CrossRefGoogle Scholar
Jeffreson, S. M. R., Kruijssen, J. M. D., Keller, B. W., et al. 2020, MNRAS, 498, 385. doi: 10.1093/mnras/staa2127 CrossRefGoogle Scholar
Kreckel, K., Faesi, C., Kruijssen, J. M. D., et al. 2018, ApJL, 863, L21. doi: 10.3847/2041-8213/aad77d CrossRefGoogle Scholar
Leroy, A. K., Schinnerer, E., Hughes, A., et al. 2021, ApJS, 257, 43. doi: 10.3847/1538-4365/ac17f3 CrossRefGoogle Scholar
Onodera, S., Kuno, N., Tosaki, T., et al. 2010, ApJL, 722, L127. doi: 10.1088/2041-8205/722/2/L127 CrossRefGoogle Scholar
Pan, H.-A., Schinnerer, E., Hughes, A., et al. 2022, ApJ, 927, 9. doi: 10.3847/1538-4357/ac474f CrossRefGoogle Scholar
Pety, J., Schinnerer, E., Leroy, A. K., et al. 2013, ApJ, 779, 43. doi: 10.1088/0004-637X/779/1/43 CrossRefGoogle Scholar
Schinnerer, E., Hughes, A., Leroy, A., et al. 2019, ApJ, 887, 49. doi: 10.3847/1538-4357/ab50c2 CrossRefGoogle Scholar
Schmidt, M. 1959, ApJ, 129, 243. doi: 10.1086/146614 CrossRefGoogle Scholar