Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T09:48:46.239Z Has data issue: false hasContentIssue false

Gaia results for star clusters and dwarf galaxies in the Milky Way

Published online by Cambridge University Press:  11 March 2020

Davide Massari*
Affiliation:
Kapteyn Astronomical Institute, University of Groningen, NL-9747 ADGroningen, Netherlands email: massari@astro.rug.nl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The second data release of the Gaia mission coupled with ground-based spectroscopic observations has allowed the determination of the orbital parameters for almost all of the Galactic globular clusters, as well as for the known dwarf spheroidal galaxies orbiting the Milky Way. Moreover, it has led to the discovery of dwarf galaxies that were accreted by the Galaxy long ago and that are now completely disrupted. By exploiting their dynamics in combination with the globular clusters age-metallicity relation, we investigated the clusters-to-dwarfs connection. We found that about 60 globulars likely formed in situ, and associated those that were accreted to the dwarf galaxy progenitor they likely formed in.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Abolfathi, B.et al. 2018, ApJS, 235, 42CrossRefGoogle Scholar
Baumgardt, H.et al. 2019, MNRAS, 482, 5138CrossRefGoogle Scholar
Belokurov, V.et al. 2018, MNRAS, 478, 611CrossRefGoogle Scholar
Dinescu, D. I.et al. 1997, AJ, 114, 1014CrossRefGoogle Scholar
Carretta, E.et al. 2009 A&A, 508, 695Google Scholar
Cudworth, K. M.et al. 1992, AJ, 103, 1252CrossRefGoogle Scholar
Fernandez-Alvar, E.et al. 2018, MNRAS, 485, 1735Google Scholar
Forbes, D. A. & Bridges, T. 2010, MNRAS, 404, 1203Google Scholar
Fritz, T. K.et al. 2018, A&A, 619, 103Google Scholar
Collaboration, Gaiaet al. 2016 A&A, 595, A1Google Scholar
Collaboration, Gaiaet al. 2018 A&A, 616, A1Google Scholar
Collaboration, Gaiaet al. 2018 A&A, 616, A12Google Scholar
Harris, W.E. 1996, AJ, 112, 1487CrossRefGoogle Scholar
Haywood, M.et al. 2018, ApJ 863, 113CrossRefGoogle Scholar
Helmi, A.et al. 1999, Nature, 402, 53CrossRefGoogle Scholar
Helmi, A.et al. 2018, Nature, 563, 85CrossRefGoogle Scholar
Ibata, R. A.et al. 1994, Nature, 370, 194CrossRefGoogle Scholar
Kallivayalil et al. 2018 ApJ, 867, 19CrossRefGoogle Scholar
Koppelman, H. H.et al. 2019 A&A, 625, 5Google Scholar
Kruijssen, J. M. D.et al. 2019, MNRAS, 486, 3180CrossRefGoogle Scholar
Leaman, R.et al. 2013, MNRAS, 436, 122CrossRefGoogle Scholar
Marin-Franch, A.et al. 2009, ApJ 694, 1498CrossRefGoogle Scholar
Massari, D.et al. 2013, ApJ 779, 81CrossRefGoogle Scholar
Massari, D.et al. 2017, A&A, 598, 9Google Scholar
Massari, D.et al. 2018, Nat. Astron., 2, 156CrossRefGoogle Scholar
Massari, D. & Helmi, A. 2018, A&A, 620, 155Google Scholar
Massari, D.et al. 2019, 639, 4Google Scholar
Massari, D.et al. 2020, A&A, 633, 36Google Scholar
McConnachie, A.W. 2012, AJ, 144, 4CrossRefGoogle Scholar
McMillan, P. J. 2018, MNRAS, 465, 76CrossRefGoogle Scholar
Myeong, G. C.et al. 2019, MNRAS, 1731Google Scholar
Pace, A. B. & Li, T. S. 2019, ApJ 875, 77CrossRefGoogle Scholar
Piatek, S.et al. 2002, AJ 124, 3198CrossRefGoogle Scholar
Piatek, S.et al. 2006, AJ 131, 1445CrossRefGoogle Scholar
Simon, J. D. 2012, ApJ 863, 89CrossRefGoogle Scholar
Sohn, T. S.et al. 2012, ApJ 753, 7CrossRefGoogle Scholar
Sohn, T. S.et al. 2018, ApJ 862, 52CrossRefGoogle Scholar
Vandenberg, D. A.et al. 2013, ApJ 775, 134CrossRefGoogle Scholar
Vasiliev, E. 2019, MNRAS 484, 7CrossRefGoogle Scholar