Published online by Cambridge University Press: 31 March 2017
We simulate the formation and evolution of young star clusters from turbulent molecular clouds using smoothed-particle hydrodynamics and direct N-body methods. We find that the shape of the cluster mass function that originates from an individual molecular cloud is consistent with a Schechter function with power-law slopes of β = −1.73. The superposition of mass functions turn out to have a power-law slope of < −2. The mass of the most massive cluster formed from a single molecular cloud with mass Mg scales with 6.1 M0.51g. The molecular clouds that tend to form massive clusters are much denser than those typical found in the Milky Way. The velocity dispersion of such molecular clouds reaches 20km s−1 and it is consistent with the relative velocity of the molecular clouds observed near NGC 3603 and Westerlund 2, for which a triggered star formation by cloud-cloud collisions is suggested.