Hostname: page-component-7dd5485656-bvgqh Total loading time: 0 Render date: 2025-11-02T02:38:55.098Z Has data issue: false hasContentIssue false

Formation of the Andromeda Giant Stream and the 10 kpc Ring Structure in the Andromeda Galaxy

Published online by Cambridge University Press:  30 October 2025

Masao Mori*
Affiliation:
Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
Ayami Hotta
Affiliation:
Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
Koki Otaki
Affiliation:
Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan

Abstract

We investigate the possible link between the Andromeda Giant Stream (AGS) and the 10 kpc ring structure using N-body/SPH simulations of a minor merger between the M31 and a satellite galaxy with a mass of 1010 M. The simulation result successfully matches the observed features of the AGS and the 10 kpc ring concurrently. The simulation reproduced the observations, showing that the stars are smoothly distributed in the galactic disk, and the gas is shaped in a ring-like structure. In addition, we demonstrate the spatial metallicity distribution of the merger remnant, assuming the metallicity gradient of the progenitor galaxy. The result remarkably captures the observed features in the AGS exhibiting non-uniform metallicity distribution perpendicular to the AGS axis. These results indicate that a minor merger with a massive dwarf galaxy is capable of simultaneously forming the AGS and the 10 kpc ring.

Information

Type
Contributed Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Block, D. L., Bournaud, F., Combes, F., Groess, R., Barmby, P., Ashby, M., Fazio, G., Pahre, M., and Willner, S.. 2006, Nature, 443, 832 CrossRefGoogle Scholar
Dehnen, W. and Aly, H. 2012, MNRAS, 425, 1068 CrossRefGoogle Scholar
Dekel, A., and Woo, J. 2003, MNRAS, 344, 1131 CrossRefGoogle Scholar
Fardal, M. A., Guhathakurta, P., Babul, A. and McConnachie, A. W. 2007, MNRAS, 380, 15 CrossRefGoogle Scholar
Gingold, R. A. and Monaghan, J. J. 1977, MNRAS, 181, 375 CrossRefGoogle Scholar
Hammer, F., Yang, Y. B., Wang, J. L., Ibata, R., Flores, H. and Puech, M., 2018, MNRAS, 475, 275 CrossRefGoogle Scholar
Lucy, L. B. 1977, AJ, 82, 1013 CrossRefGoogle Scholar
Miki, Y. and Umemura, M. 2018, MNRAS, 475, 2269 CrossRefGoogle Scholar
Monaghan, J. J. 1997, Journal of Computational Physics, 136, 298 CrossRefGoogle Scholar
Balsara, D. S. 1995, Journal of Computational Physics, 121, 357 CrossRefGoogle Scholar
Mori, M. and Rich, R. M. 2008, MNRAS, 674, 77 CrossRefGoogle Scholar
Navarro, J. F., Frenk, C. S. and White, S. D. M. 1966, ApJ, 462, 563 CrossRefGoogle Scholar
Otaki, K. and Mori, M. 2022, LNCS 13378, 373 Google Scholar
Otaki, K. and Mori, M. 2023, submitted to MNRAS Google Scholar
Preston, J., Collins, M., Rich, R. M., Ibata, R., Martin, N. F. and Fardal, M. 2021, MNRAS, 504, 3098 CrossRefGoogle Scholar
Springel, V. and Hernquist, L. 2002, MNRAS, 333, 6495 CrossRefGoogle Scholar
Wendland, H. 1995, Adv Comput Math, 4, 389 CrossRefGoogle Scholar