Hostname: page-component-7dd5485656-wxk4p Total loading time: 0 Render date: 2025-11-01T17:19:29.008Z Has data issue: false hasContentIssue false

The Formation of Magellanic System and the total mass of Large Magellanic Cloud

Published online by Cambridge University Press:  30 October 2025

Jianling Wang*
Affiliation:
CAS Key Laboratory of Optical Astronomy, National Astronomical Observatories, Beijing 100101, China
Francois Hammer
Affiliation:
GEPI, Observatoire de Paris, CNRS, Place Jules Janssen, F-92195 Meudon, France
Yanbin Yang
Affiliation:
GEPI, Observatoire de Paris, CNRS, Place Jules Janssen, F-92195 Meudon, France
Maria-Rosa L. Cioni
Affiliation:
Leibniz-Institüt für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany

Abstract

The Magellanic Stream is unique to sample the MW potential from ∼50 kpc to 300 kpc, and is also unique in constraining the LMC mass, an increasingly important question for the Local Group/Milky Way modeling. Here we compare strengths and weaknesses of the two types of models (tidal and ram-pressure) of the Magellanic Stream formation. I will present our modeling for the formation of the Magellanic System, including those of the most recent discoveries in the Stream, in the Bridge and at the outskirts of Magellanic Clouds. This model has been successful in predicting most recent observations in both properties of stellar and gas phase. It appears that it is an over-constrained model and provides a good path to investigate the Stream properties. In particular, this model requires a LMC mass significantly smaller than 1011 M.

Information

Type
Contributed Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anders, F. et al., 2022, A&A, 658, A91 CrossRefGoogle Scholar
Belokurov, V., Erkal, D., Deason, A. J., Koposov, S. E., De Angeli, F., Evans, D. W., Fraternali, F., Mackey, D., 2017, MNRAS, 466, 4711 Google Scholar
Cullinane, L. R., Mackey, A. D., Da Costa, G. S., Erkal, D., Koposov, S. E., Belokurov, V., 2022a, MNRAS, 510, 445 CrossRefGoogle Scholar
Cullinane, L. R., Mackey, A. D., Da Costa, G. S., Erkal, D., Koposov, S. E., Belokurov, V., 2022b, MNRAS, 512, 4798 CrossRefGoogle Scholar
Cullinane, L. R. et al., 2020, MNRAS, 497, 3055 Google Scholar
D’Onghia, E., Fox, A. J., 2016, ARA&A, 54, 363 Google Scholar
Fox, A. J. et al., 2014, ApJ, 787, 147 Google Scholar
Gatto, M., Ripepi, V., Bellazzini, M., Tortora, C., Tosi, M., Cignoni, M., Longo, G., 2022, ApJ, 931, 19 CrossRefGoogle Scholar
Gaia Collaboration et al., 2021, A&A, 649, A7 Google Scholar
Grady, J., Belokurov, V., Evans, N. W., 2021, ApJ, 909, 150 CrossRefGoogle Scholar
Hammer, F., Yang, Y. B., Flores, H., Puech, M., Fouquet, S., 2015, ApJ, 813, 110 CrossRefGoogle Scholar
Huang, Y. et al., 2022, ApJ, 925, 164 CrossRefGoogle Scholar
James, D. et al., 2021, MNRAS, 508, 5854 Google Scholar
Kallivayalil, N., van der Marel, R. P., Alcock, C., Axelrod, T., Cook, K. H., Drake, A. J., Geha, M., 2006, The Astrophysical Journal, 638, 772 CrossRefGoogle Scholar
Kallivayalil, N., van der Marel, R. P., Besla, G., Anderson, J., Alcock, C., 2013, The Astrophysical Journal, 764, 161 CrossRefGoogle Scholar
Lucchini, S., D’Onghia, E., Fox, A. J., Bustard, C., Bland-Hawthorn, J., Zweibel, E., 2020, Nature, 585, 203 CrossRefGoogle Scholar
Lucchini, S., D’Onghia, E., Fox, A. J., 2021, ApJL, 921, L36 CrossRefGoogle Scholar
Mastropietro, C., 2010, in American Institute of Physics Conference Series, Vol. 1240, Hunting for the Dark: the Hidden Side of Galaxy Formation, Debattista, V. P., Popescu, C. C., eds., pp. 150153 CrossRefGoogle Scholar
Mathewson, D., 2012, Journal of Astronomical History and Heritage, 15, 100 CrossRefGoogle Scholar
Mathewson, D. S., Cleary, M. N., Murray, J. D., 1974, The Astrophysical Journal, 190, 291 CrossRefGoogle Scholar
Nidever, D. L., Majewski, S. R., Butler Burton, W., Nigra, L., 2010, ApJ, 723, 1618 CrossRefGoogle Scholar
Omkumar, A. O. et al., 2021, MNRAS, 500, 2757 CrossRefGoogle Scholar
Onken, C. A. et al., 2019, PASA, 36, e033 Google Scholar
Piatek, S., Pryor, C., Olszewski, E. W., 2008, The Astronomical Journal, 135, 1024 CrossRefGoogle Scholar
Richter, P. et al., 2017, A&A, 607, A48 CrossRefGoogle Scholar
Ripepi, V. et al., 2017, MNRAS, 472, 808 Google Scholar
Tepper-Garca, T., Bland-Hawthorn, J., Pawlowski, M. S., Fritz, T. K., 2019, MNRAS, 488, 918 CrossRefGoogle Scholar
van der Marel, R. P., Kallivayalil, N., 2014, ApJ, 781, 121 CrossRefGoogle Scholar
Wang, J., Hammer, F., Yang, Y., Ripepi, V., Cioni, M.-R. L., Puech, M., Flores, H., 2019, MNRAS, 486, 5907 CrossRefGoogle Scholar
Wang, J., Hammer, F., Yang, Y., 2022, MNRAS, 515, 940 CrossRefGoogle Scholar
Yang, Y., Hammer, F., Fouquet, S., Flores, H., Puech, M., Pawlowski, M. S., Kroupa, P., 2014, MNRAS, 442, 2419 CrossRefGoogle Scholar
Zivick, P. et al., 2018, ApJ, 864, 55 CrossRefGoogle Scholar