Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T23:58:08.206Z Has data issue: false hasContentIssue false

Formation and Evolution of Protoplanetary Disks: Observations and Modeling of Jets, Disks, and Disk Substructures

Published online by Cambridge University Press:  13 January 2020

Laura M. Pérez*
Affiliation:
Universidad de Chile, Departamento de Astronomía, Camino El Observatorio 1515, Las Condes, Santiago, Chile email: lperez@das.uchile.cl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Planet formation takes place in the gaseous and dusty disks that surround young stars, known as protoplanetary disks. With the advent of sensitive observations and together with developments in theory, our field is making rapid progress in understanding how the evolution of protoplanetary disks takes place, from its inception to the end result of a fully-formed planetary system. In this review, I discuss how observations that trace both the dust and gas components of these systems inform us about their evolution, mass budget, and chemistry. Particularly, the process of disk evolution and planet formation will leave an imprint on the distribution of solid particles at different locations in a protoplanetary disk, and I focus on recent observational results at high angular resolution in the sub-millimeter regime, which have revealed a variety of substructures present in these objects.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020 

References

Partnership, ALMA, Brogan, C. L., Pérez, L. M., et al. 2015, ApJ, 808, L3 CrossRefGoogle Scholar
Andrews, S. M., Huang, J., Pérez, L. M., et al. 2018, ApJ, 869, L41 CrossRefGoogle Scholar
Andrews, S. M., Wilner, D. J., Espaillat, C., et al. 2011, ApJ, 732, 42 CrossRefGoogle Scholar
Ansdell, M., Williams, J. P., van der Marel, N., et al. 2016, ApJ, 828, 46 CrossRefGoogle Scholar
Aso, Y., Ohashi, N., Saigo, K., et al. 2015, ApJ, 812, 27 CrossRefGoogle Scholar
Barenfeld, S. A., Carpenter, J. M., Ricci, L., et al. 2016, ApJ, 827, 142 CrossRefGoogle Scholar
Benisty, M., Juhász, A., Facchini, S., et al. 2018, A&A, 619, A171 Google Scholar
Birnstiel, T., Dullemond, C. P., & Pinilla, P. 2013, A&A, 550, L8 Google Scholar
Birnstiel, T., Dullemond, C. P., Zhu, Z., et al. 2018, ApJ, 869, L45 CrossRefGoogle Scholar
Brown, J. M., Blake, G. A., Qi, C., et al. 2009, ApJ, 704, 496 CrossRefGoogle Scholar
Cazzoletti, P., van Dishoeck, E. F., Pinilla, P., et al. 2018, A&A, 619, A161 Google Scholar
Cieza, L. A., Ruz-Rodrguez, D., Hales, A., et al. 2019, MNRAS, 482, 698 CrossRefGoogle Scholar
Dipierro, G., Pinilla, P., Lodato, G., et al. 2015, MNRAS, 451, 974 CrossRefGoogle Scholar
Dong, R., Liu, S.-. yuan., Eisner, J., et al. 2018, ApJ, 860, 124 CrossRefGoogle Scholar
Dullemond, C. P., Birnstiel, T., Huang, J., et al. 2018, ApJ, 869, L46 CrossRefGoogle Scholar
Fukagawa, M., Tsukagoshi, T., Momose, M., et al. 2013, PASJ, 65, L14 CrossRefGoogle Scholar
Collaboration, Gaia, Brown, A. G. A., Vallenari, A., et al. 2018, A&A, 616, A1 Google Scholar
Geers, V. C., Pontoppidan, K. M., van Dishoeck, E. F., et al. 2007, A&A, 469, L35 Google Scholar
Guzmán, V. V., Huang, J., Andrews, S. M., et al. 2018, ApJ, 869, L48 CrossRefGoogle Scholar
Hernández, J., Hartmann, L., Megeath, T., et al. 2007, ApJ, 662, 1067 CrossRefGoogle Scholar
Huang, J., Andrews, S. M., Dullemond, C. P., et al. 2018, ApJ, 869, L42 CrossRefGoogle Scholar
Huang, J., Andrews, S. M., Pérez, L. M., et al. 2018, ApJ, 869, L43 CrossRefGoogle Scholar
Isella, A., Huang, J., Andrews, S. M., et al. 2018, ApJ, 869, L49 CrossRefGoogle Scholar
Johansen, A., Youdin, A., & Klahr, H. 2009, ApJ, 697, 1269 CrossRefGoogle Scholar
Kurtovic, N. T., Pérez, L. M., Benisty, M., et al. 2018, ApJ, 869, L44 CrossRefGoogle Scholar
Lee, C.-F., Ho, P. T. P., Li, Z.-Y., et al. 2017, Nature Astron., 1, 152 CrossRefGoogle Scholar
Louvet, F., Dougados, C., Cabrit, S., et al. 2018, A&A, 618, A120 Google Scholar
Pascucci, I., Testi, L., Herczeg, G. J., et al. 2016, ApJ, 831, 125 CrossRefGoogle Scholar
Pérez, L. M., Isella, A., Carpenter, J. M., et al. 2014, ApJ, 783, L13CrossRefGoogle Scholar
Pérez, L. M., Carpenter, J. M., Andrews, S. M., et al. 2016, Science, 353, 1519 CrossRefGoogle Scholar
Pérez, L. M., Benisty, M., Andrews, S. M., et al. 2018, ApJ, 869, L50 CrossRefGoogle Scholar
Pinilla, P., van der Marel, N., Pérez, L. M., et al. 2015, A&A, 584, A16 Google Scholar
Plunkett, A. L., Arce, H. G., Mardones, D., et al. 2015, Nature, 527, 70 CrossRefGoogle Scholar
Tazzari, M., Testi, L., Ercolano, B., et al. 2016, A&A, 588, A53 Google Scholar
Testi, L., Birnstiel, T., Ricci, L., et al. 2014, Protostars and Planets VI, 339 Google Scholar
Tobin, J. J., Kratter, K. M., Persson, M. V., et al. 2016, Nature, 538, 483 CrossRefGoogle Scholar
Tripathi, A., Andrews, S. M., Birnstiel, T., et al. 2018, ApJ, 861, 64 CrossRefGoogle Scholar
Vorobyov, E. I., Elbakyan, V. G., Plunkett, A. L., et al. 2018, A&A, 613, A18 Google Scholar
Williams, J. P., & Cieza, L. A. 2011, Annu. Rev. Astron. Astrophys., 49, 67 CrossRefGoogle Scholar
Wolf, S., & D’Angelo, G. 2005, ApJ, 619, 1114 CrossRefGoogle Scholar
Yusef-Zadeh, F., Wardle, M., Kunneriath, D., et al. 2017, ApJ, 850, L30 CrossRefGoogle Scholar
Zhang, S., Zhu, Z., Huang, J., et al. 2018, ApJ, 869, L47 CrossRefGoogle Scholar
Zhu, Z., & Stone, J. M. 2014, ApJ, 795, 53 CrossRefGoogle Scholar