Published online by Cambridge University Press: 05 September 2012
Massive stars are thought to play important roles in the early evolution of the Universe. In this paper, we first classify the final fates of massive stars into 7 cases according to their mass ranges. These variations of the final fate may correspond to the observed large diversities of supernova properties, such as extremely faint and extremely luminous (superluminous) supernovae, and the extremely energetic hypernovae. We then focus on the properties of the peculiar superluminous Type Ic supernova 1999as. We examine radioactive decay models, magnetar models, and circumstellar interaction models for the light curve of SN 1999as. We find that these models are not quite successful, and thus it is crucially important to improve these models to clarify the final fates of massive stars.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.