Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T20:42:49.340Z Has data issue: false hasContentIssue false

Extra-tidal features using Gaia DR2

Published online by Cambridge University Press:  11 March 2020

Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In recent years, we have gathered enough evidence showing that most of the Galactic globular clusters extend well beyond their King tidal radii and fill their Jacobi radii in the form of “extended stellar haloes”. In some cases, because of the interaction with the Milky Way, stars are able to exceed the Jacobi radius, generating tidal tails which may be used to trace the mass distribution in the Galaxy. In this work, we use the precious information provided by the space mission Gaia (photometry, parallaxes and proper motions) to analyze NGC 362 in the search for member stars in its surroundings. Our preliminar results suggest that it is possible to identify member stars and tidal features up to distances of a few degrees from the globular cluster center.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Odenkirchen, M., Grebel, E. K., Dehnen, W., et al. 2003, AJ, 126, 2385CrossRefGoogle Scholar
Grillmair, C. J. & Dionatos, O. 2006, ApJL, 641, L37CrossRefGoogle Scholar
Kuzma, P. B., Da Costa, G. S., Keller, S. C., et al. 2015, MNRAS, 446, 3297CrossRefGoogle Scholar
Belokurov et al. 2006, ApJL, 642, L137CrossRefGoogle Scholar
Olszewski, E. W., Saha, A., Knezek, P.et al. 2009, AJ, 138, 1570CrossRefGoogle Scholar
Correnti, M., Bellazzini, M., Dalessandro, E.et al. 2011, MNRAS, 417, 2411CrossRefGoogle Scholar
Kuzma, P. B., Da Costa, G. S., Mackey, A. D.et al. 2016, MNRAS, 461, 3639CrossRefGoogle Scholar
Sollima, A., Valls-Gabaud, D., Martinez-Delgado, D.et al. 2011, ApJL, 730, L6CrossRefGoogle Scholar
Navarrete, C., Belokurov, V. & Koposov, S. E. 2017, ApJL, 841, L23CrossRefGoogle Scholar
Carballo-Bello, J. A., Martínez-Delgado, D., Navarrete, C.et al. 2018, MNRAS, 474, 683CrossRefGoogle Scholar
Bonatto, C. & Bica, E. 2007, MNRAS, 377, 1301CrossRefGoogle Scholar
Carballo-Bello et al. 2016, MNRAS, 462, 502Google Scholar
Gaia collaboration 2018, A&A, 616, A1Google Scholar
Chen, S., Richer, H., Caiazzo, I.et al. 2018, ApJ, 867, 132CrossRefGoogle Scholar
Carballo-Bello, J. A. 2019, MNRAS, 486, 1667CrossRefGoogle Scholar
Grillmair, C. J., Freeman, K. C., Irwin, M., et al. 1995, AJ, 109, 2553CrossRefGoogle Scholar
Anguiano et al. 2015, MNRAS, 451, 1229CrossRefGoogle Scholar
de Boer, T. J. L., Gieles, M., & Balbinot, E. 2019, MNRAS, 485, 4906CrossRefGoogle Scholar
Zinn, R. in Smith, G. H. & Brodie, J. P. ed., The Globular Cluster-Galaxy Connection Vol. 48 of Astronomical Society of the Pacific Conference Series, The Galactic Halo Cluster Systems: Evidence for Accretion. p. 38 1993Google Scholar
Belokurov, V., Erkal, D. & Evans, N. W. 2018, MNRAS, 478, 611CrossRefGoogle Scholar
Helmi, A., Babusiaux, C., Koppelman, H. H., et al. 2018, Nature, 563, 85CrossRefGoogle Scholar
Myeong, G. C., Evans, N. W., Belokurov, V., et al. 2018, ApJ, 863, L28CrossRefGoogle Scholar
Piatti & Carbal lo-Bello 2019, MNRAS, 485, 1029CrossRefGoogle Scholar