Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T10:22:52.695Z Has data issue: false hasContentIssue false

Exoplanetary oxygen fugacities from polluted white dwarf stars

Published online by Cambridge University Press:  09 October 2020

Alexandra E. Doyle
Affiliation:
Earth, Planetary, and Space Sciences, University of California, Los Angeles email: a.doyle@ucla.edu
Beth Klein
Affiliation:
Physics and Astronomy, University of California, Los Angeles
Ben Zuckerman
Affiliation:
Physics and Astronomy, University of California, Los Angeles
Hilke E. Schlichting
Affiliation:
Earth, Planetary, and Space Sciences, University of California, Los Angeles email: a.doyle@ucla.edu Physics and Astronomy, University of California, Los Angeles Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology
Edward D. Young
Affiliation:
Earth, Planetary, and Space Sciences, University of California, Los Angeles email: a.doyle@ucla.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The intrinsic oxygen fugacity of a planet profoundly influences a variety of its geochemical and geophysical aspects. Most rocky bodies in our solar system formed with oxygen fugacities approximately five orders of magnitude higher than that corresponding to a hydrogen-rich gas of solar composition. Here we derive oxygen fugacities of extrasolar rocky bodies from the elemental abundances in 15 white dwarf (WD) stars polluted by accretion of rocks. We find that the intrinsic oxygen fugacities of rocks accreted by the WDs are similar to those of terrestrial planets and asteroids in our solar system. This result suggests that at least some rocky exoplanets are geophysically and geochemically similar to Earth.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Buffett, B. 2000, Science, 288, 2007CrossRefGoogle Scholar
Cartier, C. & Wood, B. J. 2019, Elements, 15, 39CrossRefGoogle Scholar
Debes, J. H. & Sigurdsson, S. 2002, ApJ, 572, 556CrossRefGoogle Scholar
Doyle, A. E., Young, E. D., Klein, B., Zuckerman, B., & Schlichting, H. E. 2019, Science, 366, 356CrossRefGoogle Scholar
Dufour, P., Kilic, M., Fontaine, G., Bergeron, P., Melis, C., & Bochanski, J. 2012, ApJ, 749, 15CrossRefGoogle Scholar
Elkins-Tanton, L. T. & Seager, S. 2008, ApJ, 688, 628CrossRefGoogle Scholar
Farihi, J., Koester, D., Zuckerman, B., Vican, L., Gansicke, B. T., Smith, N., Walth, G., & Breedt, E. 2016, MNRAS, 463, 3186CrossRefGoogle Scholar
Frost, D. J., Langenhorst, F., & van Aken, P. A. 2001, Physics and Chemistry of Minerals, 28, 455CrossRefGoogle Scholar
Frost, D. J. & McCammon, C. A. 2008, Annual Review of Earth and Planetary Sciences, 36, 389CrossRefGoogle Scholar
Gansicke, B. T., Koester, D., Farihi, J., Girven, J., Parsons, S. G., & Breedt, E. 2012, MNRAS, 424, 333CrossRefGoogle Scholar
Grossman, L., Fedkin, A. V., & Simon, S. B. 2012, Meteoritics & Planetary Science, 47, 2160CrossRefGoogle Scholar
Jura, M. 2003, ApJ, 584, L91CrossRefGoogle Scholar
Jura, M., Farihi, J., & Zuckerman, B. 2007, ApJ, 663, 1285CrossRefGoogle Scholar
Jura, M., Xu, S., Klein, B., Koester, D., & Zuckerman, B. 2012, ApJ, 750Google Scholar
Jura, M. & Young, E. D. 2014, Annual Review of Earth and Planetary Sciences, Vol 42, 42, 45CrossRefGoogle Scholar
Klein, B., Jura, M., Koester, D., & Zuckerman, B. 2011, ApJ, 741Google Scholar
Koester, D. 2009, A&A, 498, 517Google Scholar
Koester, D., Gansicke, B. T., & Farihi, J. 2014, A&A, 566Google ScholarPubMed
Kolzenburg, S., Di Genova, D., Giordano, D., Hess, K. U., & Dingwell, D. B. 2018, Earth and Planetary Science Letters, 487, 21CrossRefGoogle Scholar
Krot, A., Fegley, B., & Lodders, K. 2000, Meteoritical and Astrophysical Constraints on the Oxidation State of the Solar Nebula, ed. Mannings, V., Boss, A. P., & Russell, S. S. (University of Arizona Press), 10191054Google Scholar
Melis, C. & Dufour, P. 2016, ApJ, 834Google Scholar
Monteux, J., Golabek, G. J., Rubie, D. C., Tobie, G., & Young, E. D. 2018, Space Science Reviews, 214CrossRefGoogle Scholar
Nittler, L. R., Chabot, N. L., Grove, T. L., & Peplowski, P. N. 2019, The Chemical Composition of Mercury, ed. Solomon, N.. A. (Cambridge Univerity Press)Google Scholar
Paquette, C., Pelletier, C., Fontaine, G., & Michaud, G. 1986, ApJS, 61, 197CrossRefGoogle Scholar
Pearson, D. G., Brenker, F. E., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M. T., Matveev, S., Mather, K., Silversmit, G., Schmitz, S., & et al. 2014, Nature, 507, 221CrossRefGoogle Scholar
Rubie, D. C., Gessmann, C. K., & Frost, D. J. 2004, Nature, 429, 58CrossRefGoogle Scholar
Schaefer, L. & Fegley, B. 2017, ApJ, 843, 120CrossRefGoogle Scholar
Swan, A., Farihi, J., Koester, D., Hollands, M., Parsons, S., Cauley, P. W., Redfield, S., & Gaensicke, B. T. 2019, MNRASGoogle Scholar
Wilson, D. J., Gaensicke, B. T., Koester, D., Toloza, O., Pala, A. F., Breedt, E., & Parsons, S. G. 2015, MNRAS, 451, 3237CrossRefGoogle Scholar
Wood, B. J., Walter, M. J., & Wade, J. 2006, Nature, 441, 825CrossRefGoogle Scholar
Xu, S., Dufour, P., Klein, B., Melis, C., Monson, N. N., Zuckerman, B., Young, E. D., & Jura, M. A. 2019, ApJ, 158Google ScholarPubMed
Xu, S., Jura, M., Dufour, P., & Zuckerman, B. 2016, ApJ, 816Google Scholar
Zolotov, M. Y., Sprague, A. L., Hauck, S. A. II, Nittler, L. R., Solomon, S. C., & Weider, S. Z. 2013, Journal of Geophysical Research: Planets, 118, 138Google Scholar
Zuckerman, B., Koester, D., Reid, I. N., & Hunsch, M. 2003, ApJ, 596, 477CrossRefGoogle Scholar
Zuckerman, B., Melis, C., Klein, B., Koester, D., & Jura, M. 2010, ApJ, 722, 725CrossRefGoogle Scholar