Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T08:55:14.763Z Has data issue: false hasContentIssue false

Excitation and Evolution of Transverse Loop Oscillations by Coronal Rain

Published online by Cambridge University Press:  24 July 2018

Erwin Verwichte
Affiliation:
Department of Physics, University of Warwick, Coventry, UK email: erwin.verwichte@warwick.ac.uk
Petra Kohutova
Affiliation:
Department of Physics, University of Warwick, Coventry, UK email: erwin.verwichte@warwick.ac.uk
Patrick Antolin
Affiliation:
School of Mathematics & Statistics, University of St Andrews, St Andrews, UK
George Rowlands
Affiliation:
Department of Physics, University of Warwick, Coventry, UK email: erwin.verwichte@warwick.ac.uk
Thomas Neukirch
Affiliation:
School of Mathematics & Statistics, University of St Andrews, St Andrews, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present evidence of the excitation of vertically polarised transverse loop oscillations triggered by a catastrophic cooling of a coronal loop with two thirds of the loop mass comprising of cool rain mass. The nature and excitation of oscillations associated with coronal rain is not well understood. We consider observations of coronal rain using data from IRIS, SOT/Hinode and AIA/SDO in a bid to elucidate the excitation mechanism and evolution of wave characteristics. We apply an analytical model of wave-rain interaction, that predicts the inertial excitation amplitude of transverse loop oscillations as a function of the rain mass, to deduce the relative rain mass. It is consistent with the evolution of the oscillation period showing the loop losing a third of its mass due to falling coronal rain in a 10-15 minute time period.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Antolin, P., Shibata, K. & Vissers, G. 2010, ApJ, 716, 154CrossRefGoogle Scholar
Antolin, P. & Verwichte, E. 2011, ApJ, 736, 121Google Scholar
Antolin, P., Vissers, G., Pereira, T. M. D., Rouppe van der Voort, L. & Scullion, E. 2015, ApJ, 806, 81Google Scholar
Hannah, I. G. & Kontar, E. P. 2012, A&A, 539, A146Google Scholar
Kohutova, P. & Verwichte, E. 2016, ApJ, 827, 39Google Scholar
Kohutova, P. & Verwichte, E. 2017a, A&A, 602, A23Google Scholar
Kohutova, P. & Verwichte, E. 2017b, A&A, 606, A120Google Scholar
Müller, D. A. N., De Groof, A., Hansteen, V. H. & Peter, H. 2005, A&A, 436, 1067Google Scholar
Schrijver, C. J. 2001, Sol. Phys., 198, 325CrossRefGoogle Scholar
Verwichte, E., Nakariakov, V. M., Ofman, L. & Deluca, E. E. 2004, Sol. Phys., 223, 77Google Scholar
Verwichte, E., Aschwanden, M. J., Van Doorsselaere, T., Foullon, C. & Nakariakov, V. M. 2009, ApJ, 698, 397Google Scholar
Verwichte, E., Antolin, P., Rowlands, G., Kohutova, P. & Neukirch, T. 2017, A&A, 598, A57Google Scholar
Verwichte, E. & Kohutova, P. E. 2017, A&A, 601, L2Google Scholar