Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T15:04:48.136Z Has data issue: false hasContentIssue false

The energetics of turbulent molecular gas and star formation

Published online by Cambridge University Press:  17 August 2012

François Boulanger*
Affiliation:
Institut d'Astrophysique Spatiale (IAS), CNRS & Université Paris-Sud, France email: Francois.Boulanger@ias.u-psud.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The role interstellar turbulence plays in regulating star formation is a much debated research topic. In this paper, I take an observational view point in presenting observations of H2 line emission from extragalactic sources. I highlight key results from these observations. (1) H2 line emission is a main cooling channel of molecular gas. It is a tracer of mechanical energy dissipation complementing mass tracers in describing the dynamical state of molecular gas in galaxies. (2) Spectroscopy of warm H2 observations with the Spitzer Space Telescope and the SINFONI spectro-imager at ESO provide evidence of shock excited H2 line emission in galaxies that exemplify the main agents of galaxy evolution. (3) The dissipation of mechanical energy involves a turbulent energy cascade and the cycling of interstellar matter across ISM phases, including the formation of H2 gas from warm atomic gas. (4) In Stephan's Quintet and the radio galaxy 3C326, two sources with a high H2 luminosity to mass ratio (i.e. a high dissipation rate per unit mass), turbulence is observed to quench star formation. In the Antennae merger, star formation is observed to proceed where the turbulent kinetic energy is being dissipated.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Appleton, P. N., Xu, K. C., Reach, W. T. et al. 2006, ApJ, 639, L51.Google Scholar
Cluver, M. E., Appleton, P. N., Boulanger, F. et al. 2010, ApJ, 710, 248Google Scholar
Falgarone, E., Verstraete, L., & Pineau des Forêts, , Hily-Blant, P. 2005, A&A, 433, 997Google Scholar
Egami, E., Rieke, G. H., Fadda, D., & Hines, D. C. 2006 ApJ, 652, L21.Google Scholar
Guillard, P., Boulanger, F., Pineau des Forêts, G., & Appleton, P. N. 2009, A&A, 502, 515Google Scholar
Guillard, P., Boulanger, F., Gusdorf, A. et al. 2011, A&A, in pressGoogle Scholar
Heyer, M., Krawczyk, C., Duval, J., & Jackson, J. M. 2009, ApJ, 699, 1092Google Scholar
Herrera, C., Boulanger, F., & Nesvadba, N. P. H. 2011, A&A, 534, 138Google Scholar
Herrera, C., Boulanger, F., Nesvadba, N. P. H., & Falgarone, E. 2012, A&A, in pressGoogle Scholar
Ingalls, J. G., Bania, T. M., Boulanger, F. et al. 2011, ApJ, 743, 174Google Scholar
Krumholz, M. R., Dekel, A., & McKee, C. F. 2012, ApJ, 745, 69Google Scholar
Mac Low, M.-M. & Klessen, R. S. 2004, Reviews of Modern Physics, 76, 125Google Scholar
Nesvadba, N. P. H., Boulanger, F., Salomé, P., et al. 2010, A&A, 521, A65.Google Scholar
Nesvadba, N. P. H., Boulanger, F., Lehnert, M., et al. 2011, A&A, 536, L5.Google Scholar
Ogle, P., Boulanger, F., Guillard, P., et al. 2010, ApJ, 724, 1193Google Scholar
Roussel, H., Helou, G., Hollenbach, D. J. et al. 2007, ApJ, 669, 959Google Scholar
Teyssier, R., Chapon, D., & Bournaud, F. 2010, ApJ, 720, L149.Google Scholar
Whitmore, B. C., Chandar, R., Schweizer, F., et al. 2010, AJ, 140, 75Google Scholar
Zakamska, N. L. 2010, Nature, 465, 60Google Scholar