No CrossRef data available.
Published online by Cambridge University Press: 17 August 2012
Element abundance ratios hold important clues to understanding the evolution of stellar populations, through the varying timescales of different nucleosynthetic contributors. Newly measured and compiled [Mg/Fe] ratios in the MILES stellar library are used to confront models of star spectra. Such models have been used in recent years to provide estimates of differential changes in spectral line strengths, due to enhancements in [α/Fe]. In this paper we test one widely used set of theoretical element response functions. Using magnesium as a proxy for all alpha elements we test the reliability of these theoretical response functions against empirical observations, and thus the reliability of current methods of measuring element abundance ratios in the stellar populations.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.