Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T14:45:50.017Z Has data issue: false hasContentIssue false

Dynamical Structures in the Galactic Disk

Published online by Cambridge University Press:  06 January 2014

Alice C. Quillen*
Affiliation:
Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA email: aquillen@pas.rochester.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Resonances with spiral density waves or the Galactic bar can cause structure in local velocity distributions (also known as phase space). Because resonances are narrow, it is possible to place tight constraints on a pattern speed or the shape of the underlying gravitational potential.

Interference between multiple spiral patterns can cause localized bursts of star formation and discontinuities or kinks in the spiral arm morphology. Numerical simulations suggest that boundaries between different dominant patterns in the disk can manifest in local velocity distributions as gaps that are associated with specific orbital periods or angular momentum values. Recent studies have detected age gradients that may be associated with the appearance of spiral features such as armlets and spurs.

When patterns grow or vary in speed, resonances can be swept through the disk causing changes in the velocity distributions. Evidence of resonance capture or resonance crossing can be used to place constraints on the past history of patterns in the disk. The X-shaped Galactic bulge may have been caused by stars captured into vertical resonance with the Bar.

Disturbances in the Galactic disk, such as from a past merger, can cause an uneven distribution of disk stars in action angles. Subsequently the stellar distribution becomes more tightly wound in phase space. Phase wrapping can cause a series of shell like features in either real space or in a local velocity distribution. The spacing between features is dependent on the time since the disturbance.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Antoja, T., et al. 2012, MNRAS, 426, L1Google Scholar
Dehnen, W. & Binney, J. J. 1998, MNRAS, 298, 387Google Scholar
Dehnen, W. 2000, AJ, 119, 800Google Scholar
Dobbs, C. L. & Pringle, J. E. 2010, MNRAS, 409, 396CrossRefGoogle Scholar
Eggen, O. J. 1996, AJ, 112, 1595CrossRefGoogle Scholar
Gardner, E. & Flynn, C. 2010, MNRAS, 405, 545Google Scholar
Gardner, E. & Flynn, C. 2010, MNRAS, 406, 701Google Scholar
Gómez, F. A., Minchev, I.; Villalobos, A., O'Shea, B. W., & Williams, M. E. K. 2012, MNRAS, 419, 2163CrossRefGoogle Scholar
Lépine, J. R. D., Roman-Lopes, A., Abraham, Zulema, Junqueira, T. C., & Mishurov, Yu. N. 2011, MNRAS, 414, 1607Google Scholar
Li, Z.-Y. & Shen, J. 2012, ApJ, 757, L7CrossRefGoogle Scholar
McWilliam, A. & Zoccali, M. 2010, ApJ, 724, 1491Google Scholar
Minchev, I., Nordhaus, J., & Quillen, A. C. 2007, ApJ, 664, L31Google Scholar
Minchev, I., Quillen, A. C., Williams, M., Freeman, K. C., Nordhaus, J., Siebert, A., & Bienaymé, O. 2009, MNRAS, 396, 56Google Scholar
Nataf, D. M., Udalski, A., Gould, A., Fouque, P., & Stanek, K. Z. 2010, ApJ, 721, L28CrossRefGoogle Scholar
Pecaut, M. J., Mamajek, E. E., & Bubar, E. J. 2012, ApJ, 746, 154CrossRefGoogle Scholar
Pecaut, M. J. 2013, PhD thesis, University of RochesterGoogle Scholar
Pfenniger, D., & Friedli, D. 1991, A&A, 252, 75Google Scholar
Quillen, A. C. 2002, AJ, 124, 722CrossRefGoogle Scholar
Quillen, A. C. 2003, AJ, 125, 785Google Scholar
Quillen, A. C., & Minchev, I. 2005, AJ, 130, 576Google Scholar
Quillen, A. C., Minchev, I., Bland-Hawthorn, J., & Haywood, M. 2009, MNRAS, 397, 1599Google Scholar
Quillen, A. C., Dougherty, J., Bagley, M. B.; Minchev, I., & Comparetta, J. 2011, MNRAS, 417, 762Google Scholar
Patsis, P. A., Skokos, C., & Athanassoula, E. 2002, MNRAS, 337, 578CrossRefGoogle Scholar
Raha, N., Sellwood, J. A., James, R. A., & Kahn, F. D. 1991, Nature, 352, 411Google Scholar
Sánchez-Gil, M. C., Jones, D. H., Pérez, E., Bland-Hawthorn, J., Alfaro, E. J., & OByrne, J. 2011, MNRAS, 415, 753CrossRefGoogle Scholar
Widrow, L. M., Pym, B., & Dubinski, J. 2008, ApJ, 679, 1239Google Scholar