Hostname: page-component-7dd5485656-jtdwj Total loading time: 0 Render date: 2025-10-31T22:01:40.327Z Has data issue: false hasContentIssue false

A dynamical mass map of the nearby Fornax galaxy cluster

Published online by Cambridge University Press:  30 October 2025

Avinash Chaturvedi*
Affiliation:
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany European Southern Observatory, Karl-Schwarzschild-Straße 2, 85748 Garching, Germany
Nicola R. Napolitano
Affiliation:
School of Physics and Astronomy, Sun Yat-sen University, Zhuhai Campus, 2 Daxue Road, Xiangzhou District, Zhuhai, P. R. China INAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello, 16, 80131-Napoli, Italy
Michael Hilker
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Straße 2, 85748 Garching, Germany

Abstract

The nearby Fornax cluster (d ∼ 20 Mpc) provides an unparalleled opportunity to investigate the formation and evolution of early-type galaxies in a dense environment. Using the spectroscopic data from the ESO VLT/VIMOS spectrograph of the Fornax cluster, we have kinematically characterised the photometrically detected globular cluster (GC) candidates in the core of the cluster. We confirm a total of 777 GCs with new velocity measurements and compile the most extensive spectroscopic GC sample of 2341 objects in this environment. We used our GC radial velocity catalogue to perform dynamical mass modelling of NGC 1399, the central galaxy of the the Fornax cluster out to its 200 kpc. We find that both cusp (NFW) and core (Burkert) dark matter (DM) halo can produce the observed kinematics. Independent of the DM halo profile used, we find that inclusion of the intra-cluster GCs in mass-modelling can effect the mass-estimate.

Information

Type
Contributed Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Amorisco, N. C. 2019, MNRAS, 482, 2978 Google Scholar
Burkert, A. 1995, ApJL, 447, L25.Google Scholar
Cantiello, M., Venhola, A., Grado, A., et al. 2020, Astronomy & Astrophysics, 639, A136. doi: 10.1051/0004-6361/202038137 CrossRefGoogle Scholar
Chaturvedi, A., Hilker, M., Cantiello, M., et al. 2022, A&A, 657, A93.Google Scholar
Kravtsov, A. V. & Borgani, S. 2012, ARAA, 50, 353 CrossRefGoogle Scholar
D’Abrusco, R., Cantiello, M., Paolillo, M., et al. 2016, ApJL, 819, L31. doi: 10.3847/2041-8205/819/2/L31 CrossRefGoogle Scholar
Iodice, E., Capaccioli, M., Grado, A., et al. 2016, ApJ, 820, 42. doi: 10.3847/0004-637X/820/1/42 CrossRefGoogle Scholar
Pota, V., Napolitano, N. R., Hilker, M., et al. 2018, MNRAS, 481, 1744.Google Scholar
Napolitano, N. R., Romanowsky, A. J., Coccato, L., et al. 2009, MNRAS, 393, 329.Google Scholar
Napolitano, N. R., Romanowsky, A. J., Capaccioli, M., et al. 2011, MNRAS, 411, 2035.Google Scholar
Napolitano, N. R., Pota, V., Romanowsky, A. J., et al. 2014, MNRAS, 439, 659.Google Scholar
Napolitano, N. R., Gatto, M., Spiniello, C., et al. 2022, AA, 657, A94.Google Scholar
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493.Google Scholar
Łokas, E. L. & Mamon, G. A. 2003, MNRAS, 343, 401.Google Scholar
Łokas, E. L., Mamon, G. A., & Prada, F. 2005, MNRAS, 363, 918.Google Scholar
Spiniello, C., Napolitano, N. R., Arnaboldi, M., et al. 2018, MNRAS, 477, 1880.Google Scholar
Foreman-Mackey, D., Hogg, D. W., Lang, D., et al. 2013, PASP, 125, 306. doi: 10.1086/670067 CrossRefGoogle Scholar