Hostname: page-component-54dcc4c588-gwv8j Total loading time: 0 Render date: 2025-10-07T15:20:00.987Z Has data issue: false hasContentIssue false

Dust formation during the interaction of binary stars by common envelope

Published online by Cambridge University Press:  06 October 2025

Luis C. Bermúdez-Bustamante
Affiliation:
School of Mathematical and Physical Sciences, Macquarie University, Balaclava Road, North Ryde, Sydney, NSW 2109, Australia Astrophysics and Space Technologies Research Centre, Macquarie University, Balaclava Road, North Ryde, Sydney, NSW 2109, Australia
Orsola De Marco
Affiliation:
School of Mathematical and Physical Sciences, Macquarie University, Balaclava Road, North Ryde, Sydney, NSW 2109, Australia Astrophysics and Space Technologies Research Centre, Macquarie University, Balaclava Road, North Ryde, Sydney, NSW 2109, Australia
Lionel Siess
Affiliation:
Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles (ULB), CP 226, 1050 Brussels, Belgium
Daniel J. Price
Affiliation:
School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
Miguel González-Bolívar
Affiliation:
School of Mathematical and Physical Sciences, Macquarie University, Balaclava Road, North Ryde, Sydney, NSW 2109, Australia Astrophysics and Space Technologies Research Centre, Macquarie University, Balaclava Road, North Ryde, Sydney, NSW 2109, Australia
Mike Y. M. Lau
Affiliation:
School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia OzGrav: The ARC Centre of Excellence for Gravitational Wave Discovery, Australia Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
Chunliang Mu
Affiliation:
School of Mathematical and Physical Sciences, Macquarie University, Balaclava Road, North Ryde, Sydney, NSW 2109, Australia Astrophysics and Space Technologies Research Centre, Macquarie University, Balaclava Road, North Ryde, Sydney, NSW 2109, Australia
Ryosuke Hirai
Affiliation:
School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia OzGrav: The ARC Centre of Excellence for Gravitational Wave Discovery, Australia
Taïssa Danilovich
Affiliation:
School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Clayton 3800, Australia
Mansi Kasliwal
Affiliation:
Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We performed numerical simulations of the common envelope (CE) interaction between two intermediate-mass asymptotic giant branch (AGB) stars and their low-mass companions. For the first time, formation and growth of dust in the envelope is calculated explicitly. We find that the first dust grains appear as early as ∼1–3 yrs after the onset of the CE, and are smaller than grains formed later. As the simulations progress, a high-opacity dusty shell forms, resulting in the CE photosphere being up to an order of magnitude larger than it would be without the inclusion of dust. At the end of the simulations, the total dust yield is ∼8.2×10−3 M (∼2.2×10−2 M) for a CE with a 1.7 M (3.7 M) AGB star. Dust formation does not substantially lead to more mass unbinding or substantially alter the orbital evolution.

Information

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bermúdez-Bustamante, L. C., Garca-Segura, G., Steffen, W., Sabin, L., 2020, MNRAS, 493, 2606.CrossRefGoogle Scholar
Blagorodnova, N., Kotak, R., Polshaw, J., Kasliwal, M. M., Cao, Y., Cody, A. M., Doran, G. B., et al., 2017, yCat, J/ApJ/834/107.CrossRefGoogle Scholar
Bowen, G. H., 1988, ApJ, 329, 299.CrossRefGoogle Scholar
De Marco, O., Izzard, R. G., 2017, PASA, 34, e001.CrossRefGoogle Scholar
Gail, H.-P., Keller, R., Sedlmayr, E., 1984, A&A, 133, 320 Google Scholar
Glanz, H., Perets, H. B., 2018, MNRAS, 478, L12.CrossRefGoogle Scholar
González-Bolvar, M., Bermúdez-Bustamante, L. C., De Marco, O., Siess, L., Price, D. J., Kasliwal, M., 2023, arXiv, arXiv:2306.16609.Google Scholar
González-Bolvar, M., De Marco, O., Lau, M. Y. M., Hirai, R., Price, D. J., 2022, MNRAS, 517, 3181.CrossRefGoogle Scholar
Iaconi, R., De Marco, O., 2019, MNRAS, 490, 2550.CrossRefGoogle Scholar
Iaconi, R., Maeda, K., Nozawa, T., De Marco, O., Reichardt, T., 2020, MNRAS, 497, 3166.CrossRefGoogle Scholar
Ivanova, N., Justham, S., Chen, X., De Marco, O., Fryer, C. L., Gaburov, E., Ge, H., et al., 2013, A&ARv, 21, 59.Google Scholar
Ivanova, N., Justham, S., Podsiadlowski, P., 2015, MNRAS, 447, 2181.CrossRefGoogle Scholar
Kasliwal, M. M., Cenko, S. B., Kulkarni, S. R., Ofek, E. O., Quimby, R., Rau, A., 2011, ApJ, 735, 94.CrossRefGoogle Scholar
Lau, M. Y. M., Hirai, R., González-Bolvar, M., Price, D. J., De Marco, O., Mandel, I., 2022, MNRAS, 512, 5462.CrossRefGoogle Scholar
, G., Zhu, C., Podsiadlowski, P., 2013, ApJ, 768, 193.CrossRefGoogle Scholar
Nicholls, C. P., Melis, C., Soszynski, I., Udalski, A., Szymanski, M. K., Kubiak, M., Pietrzynski, G., et al., 2013, MNRAS, 431, L33.CrossRefGoogle Scholar
Paczyński, B., 1971, ARA&A, 9, 183.Google Scholar
Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P., Timmes, F., 2011, ApJS, 192, 3.CrossRefGoogle Scholar
Price, D. J., Wurster, J., Tricco, T. S., Nixon, C., Toupin, S., Pettitt, A., Chan, C., et al., 2018, PASA, 35, e031.CrossRefGoogle Scholar
Reichardt, T. A., De Marco, O., Iaconi, R., Tout, C. A., Price, D. J., 2019, MNRAS, 484, 631.CrossRefGoogle Scholar
Reichardt, T. A., De Marco, O., Iaconi, R., Chamandy, L., Price, D. J., 2020, MNRAS, 494, 5333.CrossRefGoogle Scholar
Siess, L., Homan, W., Toupin, S., Price, D. J., 2022, A&A, 667, A75.Google Scholar
Tylenda, R., Hajduk, M., Kamiński, T., Udalski, A., Soszyński, I., Szymański, M. K., Kubiak, M., et al., 2011, A&A, 528, A114.Google Scholar
Valsan, V., Borges, S. V., Prust, L., Chang, P., 2023, MNRAS, 526, 5365.CrossRefGoogle Scholar