Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T10:34:31.281Z Has data issue: false hasContentIssue false

Dust formation at cryogenic temperatures

Published online by Cambridge University Press:  04 September 2018

Thomas Henning
Affiliation:
Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany email: henning@mpia.de
Cornelia Jäger
Affiliation:
Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, 07743 Jena, Germany
Gaël Rouillé
Affiliation:
Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, 07743 Jena, Germany
Daniele Fulvio
Affiliation:
Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente 225, 22451-900 Gávea, Rio de Janeiro, RJBrazil
Serge A. Krasnokutski
Affiliation:
Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, 07743 Jena, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The efficiency of dust formation in a variety of environments is an ongoing topic for discussions, especially if it comes to dust formation in the interstellar medium. Although this possibility is discussed in a wide range of numerical studies, experiments on the formation of dust at low densities and temperatures are mostly lacking. This contribution summarizes the main findings of our low-temperature condensation experiments including the formation of silica, complex silicates with pyroxene and olivine stoichiometry, and of carbonaceous refractory materials. Atomic and molecular species to be expected as products of supernovae shock fronts were produced by laser ablation of silicates and graphite. These species were deposited together with a rare gas on cold substrates representing the surfaces of surviving dust grains in the interstellar medium. After characterizing the precursor species, the rare gas matrix was annealed to induce diffusion and reactions between the initial components. We found the production of amorphous and homogeneous silica and magnesium iron silicates at temperatures of about 12 K in a barrierless reaction as monitored by infrared spectroscopy. The 10 μm band of the low-temperature siliceous condensates shows a striking similarity to the 10 μm band of interstellar silicates. Carbonaceous atoms and molecules can also react without a barrier and form an amorphous or hydrogenated amorphous carbon material. The refractory condensate has properties comparable to fullerene-like carbon grains formed at high temperatures.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Aoyama, S., Hou, K.-C., Shimizu, I., Hirashita, H., Todoroki, K., Choi, J.-H., & Nagamine, K., 2017, MNRAS, 466, 105Google Scholar
Draine, B. T. 2009, in: Henning, Th., Grün, E. & Steinacker, J. (eds.), Cosmic Dust Near and Far, ASP Conf. Ser. Vol. 414 (San Francisco: ASP), p. 453Google Scholar
Cherchneff, I., Le Teuff, Y. H., Williams, P. M., & Tielens, A. G. G. M., 2000, A&A, 357, 572Google Scholar
Chertihin, G. V., Saffel, W., Yustein, J. T., Andrews, L., Neurock, M., Ricca, A., & Bauschlicher, C. W., 1996, J. Phys. Chem., 100, 5261Google Scholar
Chiar, J. E. & Tielens, A. G. G. M., 2006, ApJ, 637, 774Google Scholar
Fulvio, D., Gobi, S., Jäger, C., Kereszturi, A., & Henning, Th., 2017, ApJS, 233, 14Google Scholar
Furuya, R. S., Walmsley, C. M., Nakanishi, K., Schilke, P., & Bachiller, R., 2003, A&A, 409, L21Google Scholar
Gail, H.-P. & Sedlmayr, E., 1999, A&A, 347, 594Google Scholar
Gielen, C., Bouwman, J., Van Winckel, H., Lloyd Evans, T., Woods, P. M., Kemper, F., Marengo, M., Meixner, M., Sloan, G. C., & Tielens, A. G. G. M., 2011, A&A, 533, A99Google Scholar
Green, D. W., Reedy, G. T., & Kay, J. G., 1979, J. Mol. Spectrosc., 78, 257Google Scholar
Jacox, M. E. & Thompson, W. E., 2013, J. Phys. Chem. A, 117, 9380Google Scholar
Jäger, C., Huisken, F., Mutschke, H., Llamas Jansa, I., & Henning, Th., 2009, ApJ, 696, 706Google Scholar
Jäger, C., Mutschke, H., & Henning, Th., 1998, A&A, 332, 291Google Scholar
Krasnokutski, S., Rouillé, G., & Huisken, F., 2005, Chem. Phys. Lett., 406, 386Google Scholar
Krasnokutski, S. A., Rouillé, G., Jäger, C., Huisken, F., Zhukovska, S., & Henning, Th., 2014, ApJ, 782, 15Google Scholar
Llamas-Jansa, I., Jäger, C., Mutschke, H., & Henning, Th., 2007, Carbon, 45, 1542Google Scholar
McKinnon, R., Torrey, P., & Vogelsberger, M., 2016, MNRAS, 457, 3775Google Scholar
Michałowski, M., 2015, A&A, 577, A80Google Scholar
Min, M., Waters, L. B. F. M., de Koter, A., Hovenier, J. W., Keller, L. P., & Markwick-Kemper, F., 2007, A&A, 462, 667Google Scholar
Öberg, K. I., Fraser, H. J., Boogert, A. C. A., Bisschop, S. E., Fuchs, G. W., van Dishoeck, E. F., & Linnartz, H., 2007, A&A, 462, 1187Google Scholar
Rouillé, G., Jäger, C., Krasnokutski, S. A., Krebsz, M., & Henning, T., 2014, Faraday Discuss., 168, 449Google Scholar
Rouillé, G., Krasnokutski, S. A., Krebsz, M., Jäger, C., Huisken, F., & Henning, T. 2013, in: Andersen, A., Baes, M., Gomez, H., Kemper, C. & Watson, D. (eds.), The Life Cycle of Dust in the Universe: Observations, Theory, and Laboratory Experiments, PoS(LCDU2013) (Proceedings of Science), p. 47Google Scholar
Schilke, P., Walmsley, C. M., Pineau des Forêts, G., & Flower, D. R., 1997, A&A, 321, 293Google Scholar
Schnaiter, M., Mutschke, H., Dorschner, J., Henning, Th., & Salama, F., 1998, ApJ, 498, 486Google Scholar
Tremblay, B., Roy, P., Manceron, L., Alikhani, M. E., & Roy, D., 1996, J. Chem. Phys., 104, 2773Google Scholar
Walmsley, C. M., Bachiller, R., Pineau des Forêts, G., & Schilke, P., 2002, ApJ, 556, L109Google Scholar
Yamaguchi, Y. & Wakabayashi, T., 2004, Chem. Phys. Lett., 388, 436Google Scholar
Zhukovska, S., Dobbs, C., Jenkins, E. B., & Klessen, R. S., 2016, ApJ, 831, 147Google Scholar
Zhukovska, S., Gail, H.-P., & Trieloff, M., 2008, A&A, 479, 453Google Scholar
Zhukovska, S. & Henning, T., 2013, A&A, 555, A99Google Scholar