Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T15:45:10.847Z Has data issue: false hasContentIssue false

Doppler Tomography of Accretion Disks and Streams in Close Binaries

Published online by Cambridge University Press:  12 July 2007

Mercedes T. Richards*
Affiliation:
Department of Astronomy & Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA, 16802, USA email: mrichards@astro.psu.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The application of tomography to the study of gas flows in interacting binaries has led to fascinating images of the Cataclysmic Variables and Algol-type binaries. Such detailed images are currently unachievable using direct-imaging techniques. Numerous images of accretion flows have now been derived from optical and ultraviolet spectra and they have been used to identify multiple emission sources including the gas stream, accretion disk, accretion annulus, shock regions, and the chromosphere of the mass loser. It was difficult to distinguish between the separate sources of emission since these sources have overlapping velocities in the Doppler tomogram. However, with the aid of a new spectral synthesis code, we can now systematically extract the individual emission sources to sequentially isolate the images of the disk and gas stream. With these new tools, we have begun to extract the critical properties of the disk and gas stream more accurately than previously possible.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Agafonov, M.I., Richards, M.T., & Sharova, O.I. 2006, ApJ, 652, 1547 CrossRefGoogle Scholar
Albright, G.E. & Richards, M.T. 1996, ApJ, 459, L99 CrossRefGoogle Scholar
Bisikalo, D.V. & Matsuda, T. 2007 these proceedings, 356CrossRefGoogle Scholar
Budaj, J. & Richards, M.T. 2004, Contrib. Astron. Obs. Skalnate Pleso, 34, 167 Google Scholar
Budaj, J., Richards, M.T., & Miller, B. 2005, ApJ, 623, 411 CrossRefGoogle Scholar
Groot, P.J. 2001, ApJ, 551, 89 CrossRefGoogle Scholar
Harlaftis, E., Steeghs, D., Horne, K., Martiacn, E. & Magazzú 1999, MNRAS, 306, 348 CrossRefGoogle Scholar
Herman, G.T. 1980, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography (New York: Academic Press)Google Scholar
Hubeny, I. 1988, Comput. Phys. Comm., 52, 103 Google Scholar
Hubeny, I. & Lanz, T. 1992, A&A, 262, 501 Google Scholar
Hubeny, I. & Lanz, T. 1995, ApJ, 439, 875 CrossRefGoogle Scholar
Hubeny, I., Lanz, T., & Jeffery, C. S. 1994, Newsletter on Analysis of Astronomical Spectra No.20, C.S. Jeffery (CCP7; St. Andrews: St. Andrews Univ.), 30Google Scholar
Kaitchuck, R.H., Schlegel, E.M., Honeycutt, R.K., Horne, K., Marsh, T.R., White, J.C., & Mansperger, C.S. 1994, ApJS, 93, 519 CrossRefGoogle Scholar
Karovska, M. Schlegel, E., Hack, W., Raymond, J. C., & Wood, B. E. 2005, ApJ, 623, L137L140 CrossRefGoogle Scholar
Kempner, J.C. & Richards, M.T. 1999, ApJ, 512, 345 CrossRefGoogle Scholar
Kurucz, R.L. 1993, SYNTHE Spectrum Synthesis Programs and Line Data (CD-ROM 18)Google Scholar
Marsh, T. R. 2001, Lecture Notes in Physics, 573, 1 CrossRefGoogle Scholar
Marsh, T.R. & Horne, K. 1988, MNRAS, 235, 269 CrossRefGoogle Scholar
Miller, B., Budaj, J., Richards, M.T., Koubský, P., & Peters, G.J. 2007, ApJ, 656, 1075 CrossRefGoogle Scholar
Morales-Rueda, L. 2004, Astron. Nach., 325, 193 CrossRefGoogle Scholar
Morales-Rueda, L., Marsh, T. R., & Billington, I. 2000, MNRAS, 313, 454 CrossRefGoogle Scholar
Peters, G.J. 2007, IAU Symp. 240, Hartkopf, W., Guinan, E., & Harmanec, P. (eds.), in pressGoogle Scholar
Peters, G.J. & Polidan, R.S. 1998, ApJ, 500, L17 CrossRefGoogle Scholar
Radon, J. 1917, Berichte Sächsische Akademie der Wissenschaften Leipzig Math. Phys. Kl., 69, 262 (reprinted in 1983: Proc. Symposia Appl. Math, 27, 71)Google Scholar
Richards, M.T. 1993, ApJS, 86, 255 CrossRefGoogle Scholar
Richards, M.T. 2001, Lecture Notes in Physics, 573, 276 CrossRefGoogle Scholar
Richards, M.T. 2004, Astron. Nach., 325, 229 CrossRefGoogle Scholar
Richards, M.T. & Albright, G.E. 1996, in Stellar Surface Structure, ed. Strassmeier, K. & Linsky, J. (Dordrecht: Kluwer), 493 Google Scholar
Richards, M.T., Albright, G.E. & Bowles, L. M. 1995, ApJ, 438, L103 CrossRefGoogle Scholar
Richards, M.T., Koubský, P., Šimon, V., Peters, G.J., Hirata, R., Škoda, P. & Masuda, S. 2000, ApJ, 531, 1003 CrossRefGoogle Scholar
Richards, M.T. & Ratliff, M.A. 1998, ApJ, 493, 326 CrossRefGoogle Scholar
Richards, M.T. & Rosolowsky, E.W. 1998, ASP Conf. Ser., 154, 2038 Google Scholar
Robinson, E.L., Marsh, T.R., & Smak, J.I. 1993, in Accretion Disks in Compact Stellar Systems, ed. Wheeler, J.C. (Singapore: World Scientific), 75 CrossRefGoogle Scholar
Schwope, A.D. 2001, Lecture Notes in Physics, 573, 127 CrossRefGoogle Scholar
Schwope, A.D., Mantel, K.-H., & Horne, K. 1997, A&A, 319, 894 Google Scholar
Schwope, A.D., Staude, A., Vogel, J. & Schwarz, R. 2004, Astron. Nach., 325, 197 CrossRefGoogle Scholar
Shepp, L.A. 1983, Proc. Symposia in Appl. Math, 27, 1 CrossRefGoogle Scholar
Sawada, E., Matsuda, T. & Hachisu, I. 1986, MNRAS, 219, 75 CrossRefGoogle Scholar
Staude, A., Schwope, A. D., & Schwarz, R. 2001, A&A, 374, 588 Google Scholar
Steeghs, D. 2004, Astron. Nach., 325, 185 CrossRefGoogle Scholar
Steeghs, D., Harlaftis, E. T., & Horne, K. 1997, MNRAS, 290, L28 Google Scholar
Vrtilek, S.D., Quaintrell, H., Boroson, B. & Shields, M. 2004, Astron. Nach., 325, 209 CrossRefGoogle Scholar