Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T03:45:13.101Z Has data issue: false hasContentIssue false

Discovery of a Thorne-Żytkow object candidate in the Small Magellanic Cloud

Published online by Cambridge University Press:  23 January 2015

Emily M. Levesque
Affiliation:
Center for Astrophysics & Space Astronomy, University of Colorado UCB 389, Boulder, CO 80309, USA; Hubble Fellow email: Emily.Levesque@colorado.edu
Philip Massey
Affiliation:
Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001, USA
Anna N. Żytkow
Affiliation:
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
Nidia Morrell
Affiliation:
Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena, Chile
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Thorne-Żytkow objects (TŻOs) are a theoretical class of star in which a compact neutron star is surrounded by a large, diffuse envelope. Supergiant TŻOs are predicted to be almost identical in appearance to red supergiants (RSGs), with their very red colors and cool temperatures placing them at the Hayashi limit on the H-R diagram. The only features that can be used at present to distinguish TŻOs from the general RSG population are the unusually strong heavy-element and lithium lines present in their spectra. These elements are the unique products of the stars fully convective envelope linking the photosphere with the extraordinarily hot burning region in the vicinity of the neutron star core. We have recently discovered a TŻO candidate in the Small Magellanic Cloud. It is the first star to display the distinctive chemical profile of anomalous element enhancements thought to be characteristic of TŻOs; however, up-to-date models and additional observable predictions (including potential asteroseismological signatures) are required to solidify this discovery. The definitive detection of a TŻO would provide the first direct evidence for a completely new model of stellar interiors, a theoretically predicted fate for massive binary systems, and never-before-seen nucleosynthesis processes that would offer a new channel for heavy-element and lithium production in our universe.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Bernstein, R., Shectman, S. A., Gunnels, S. M., Mochnacki, S., & Athey, A. E. 2003, in Iye, M. & Moorwood, A. F. M. (eds.), Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, Vol. 4841 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp 1694–1704Google Scholar
Biehle, G. T. 1991, ApJ 380, 167CrossRefGoogle Scholar
Biehle, G. T. 1994, ApJ 420, 364Google Scholar
Cameron, A. G. W. 1955, ApJ 121, 144Google Scholar
Cannon, R. C. 1993, MNRAS 263, 817Google Scholar
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ 345, 245CrossRefGoogle Scholar
Castelaz, M. W., Luttermoser, D. G., Caton, D. B., & Piontek, R. A. 2000, AJ 120, 2627Google Scholar
García-Hernández, D. A., Zamora, O., Yagüe, A., et al. 2013, A&A 555, L3Google Scholar
Gustafsson, B., Edvardsson, B., Eriksson, K., et al. 2008, A&A 486, 951Google Scholar
Hayashi, C. & Hoshi, R. 1961, PASJ 13, 442Google Scholar
Kuchner, M. J., Vakil, D., Smith, V. V., et al. 2002, in Shara, M. M. (ed.), Stellar Collisions, Mergers and their Consequences, Vol. 263 of Astronomical Society of the Pacific Conference Series, p. 131Google Scholar
Leonard, P. J. T., Hills, J. G., & Dewey, R. J. 1994, ApJ (Letters) 423, L19Google Scholar
Levesque, E. M., Massey, P., Olsen, K. A. G., et al. 2005, ApJ 628, 973Google Scholar
Levesque, E. M., Massey, P., Olsen, K. A. G., et al. 2006, ApJ 645, 1102Google Scholar
Levesque, E. M., Massey, P., Żytkow, A. N., & Morrell, N. 2014, MNRAS 443, L94CrossRefGoogle Scholar
Linden, T., Kalogera, V., Sepinsky, J. F., et al. 2010, ApJ 725, 1984Google Scholar
Maeder, A. & Meynet, G. 2001, A&A 373, 555Google Scholar
Marshall, J. L., Burles, S., Thompson, I. B., et al. 2008, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7014 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference SeriesGoogle Scholar
Massey, P., Lang, C. C., Degioia-Eastwood, K., & Garmany, C. D. 1995, ApJ 438, 188CrossRefGoogle Scholar
Massey, P., Morrell, N. I., Neugent, K. F., et al. 2012, ApJ 748, 96Google Scholar
Massey, P., Plez, B., Levesque, E. M., et al. 2005, ApJ 634, 1286CrossRefGoogle Scholar
Neugent, K. F., Massey, P., Skiff, B., et al. 2010, ApJ 719, 1784Google Scholar
Payne-Gaposchkin, C. & Gaposchkin, S. 1966, Smithsonian Contributions to Astrophysics 9, 1Google Scholar
Podsiadlowski, P., Cannon, R. C., & Rees, M. J. 1995, MNRAS 274, 485Google Scholar
Reid, N. & Mould, J. 1990, ApJ 360, 490Google Scholar
Smith, V. V., Plez, B., Lambert, D. L., & Lubowich, D. A. 1995, ApJ 441, 735CrossRefGoogle Scholar
Taam, R. E., Bodenheimer, P., & Ostriker, J. P. 1978, ApJ 222, 269CrossRefGoogle Scholar
Thorne, K. S. & Żytkow, A. N. 1975, ApJ (Letters) 199, L19CrossRefGoogle Scholar
Thorne, K. S. & Żytkow, A. N. 1977, ApJ 212, 832Google Scholar
Tout, C. A., Zytkow, A. N., Church, R. P., & Lau, H. H. B. 2014, ArXiv e-printsGoogle Scholar
van den Bergh, S. 2000, The Galaxies of the Local Group, CambridgeGoogle Scholar
van Paradijs, J., Spruit, H. C., van Langevelde, H. J., & Waters, L. B. F. M. 1995, A&A 303, L25Google Scholar
Vanture, A. D., Zucker, D., & Wallerstein, G. 1999, ApJ 514, 932Google Scholar
Wallace, R. K. & Woosley, S. E. 1981, ApJS 45, 389Google Scholar
Wood, P. R., Bessell, M. S., & Fox, M. W. 1983, ApJ 272, 99CrossRefGoogle Scholar
Zimmerman, M. L. 1979, Ph.D. thesis, MASSACHUSETTS INSTITUTE OF TECHNOLOGY.Google Scholar