Hostname: page-component-7dd5485656-dk7s8 Total loading time: 0 Render date: 2025-10-30T17:42:07.807Z Has data issue: false hasContentIssue false

Detection of density variations and off-track features in stellar streams

Published online by Cambridge University Press:  30 October 2025

A. Viswanathan*
Affiliation:
Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen, The Netherlands
E. Starkenburg
Affiliation:
Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen, The Netherlands
A. F. Esselink
Affiliation:
Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen, The Netherlands

Abstract

Stellar streams unveil galactic histories through gravitational interactions, mergers, and tidal disruptions. To explore the complex morphology of streams, we use a ∼47 million halo main sequence stars catalogue using Gaia DR3 proper motion and photometry information, the combination of which renders the reduced proper motion parameter. This sample with reliable photometric distances reaches out to ∼21 kpc thereby probing much further out than would be possible using reliable Gaia parallaxes. Binned velocity moments on-sky pop up several known streams in the inner halo - particularly retrograde structures, due to the kinematic selection. We select and characterise the streams GD-1, Jhelum and Phlegethon. The faint signs of disequilibrium in the form of kinks and density variations in these thin streams will paint a more detailed picture of the existence and properties of the dark matter sub-haloes that perturb them and in turn, the mass distribution of our Galaxy.

Information

Type
Contributed Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Belokurov, V., et al., 2006, ApJ, 642, L137CrossRefGoogle Scholar
Bonaca, A., Hogg, D. W., Price-Whelan, A. M., Conroy, C., 2019a, ApJ, 880, 38 CrossRefGoogle Scholar
Bonaca, A., Conroy, C., Price-Whelan, A. M., Hogg, D. W., 2019b, ApJ, 881, L37 CrossRefGoogle Scholar
Grillmair, C. J., Dionatos, O., 2006, ApJ, 643, L17 CrossRefGoogle Scholar
Ibata, R. A., Gilmore, G., Irwin, M. J., 1994, Nature, 370, 194 CrossRefGoogle Scholar
Ibata, R. A., Malhan, K., Martin, N. F., Starkenburg, E., 2018, ApJ, 865, 85 CrossRefGoogle Scholar
Ibata, R., et al., 2021, ApJ, 914, 123 CrossRefGoogle Scholar
Koposov, S. E., Rix, H.-W., Hogg, D. W., 2010, ApJ, 712, 260 CrossRefGoogle Scholar
Koppelman, H. H., Helmi, A., 2021, A&A, 645, A69 CrossRefGoogle Scholar
Malhan, K., Ibata, R. A., 2018, MNRAS, 477, 4063 CrossRefGoogle Scholar
Shipp, N., et al., 2018, ApJ, 862, 114 Google Scholar
Viswanathan, A., Starkenburg, E., Koppelman, H. H., Helmi, A., Balbinot, E., Esselink, A. F., 2023, MNRAS, 521, 2087 CrossRefGoogle Scholar
Webb, J. J., Bovy, J., 2019, MNRAS, 485, 5929 Google Scholar