Hostname: page-component-7dd5485656-gs9qr Total loading time: 0 Render date: 2025-11-01T01:29:39.125Z Has data issue: false hasContentIssue false

Dark matter content and dynamical masses of ultra-diffuse galaxies in the Coma cluster

Published online by Cambridge University Press:  30 October 2025

Igor V. Chilingarian*
Affiliation:
Center for Astrophysics – Harvard and Smithsonian, 60 Garden St. Cambridge, MA, 02138 USA Sternberg Astronomical Institute, Moscow State University, 13 Universitetsky pr., Moscow, Russia
Kirill A. Grishin
Affiliation:
Sternberg Astronomical Institute, Moscow State University, 13 Universitetsky pr., Moscow, Russia Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France
Anton V. Afanasiev
Affiliation:
Sternberg Astronomical Institute, Moscow State University, 13 Universitetsky pr., Moscow, Russia LESIA, Observatoire de Paris, 5 place Jules Janssen, 92195, Meudon, France
Anton Mironov
Affiliation:
Faculty of Space Research, Moscow State University, 1 Leninskie Gory, bld. 52, Moscow, Russia
Daniel Fabricant
Affiliation:
Center for Astrophysics – Harvard and Smithsonian, 60 Garden St. Cambridge, MA, 02138 USA
Sean Moran
Affiliation:
Center for Astrophysics – Harvard and Smithsonian, 60 Garden St. Cambridge, MA, 02138 USA
Nelson Caldwell
Affiliation:
Center for Astrophysics – Harvard and Smithsonian, 60 Garden St. Cambridge, MA, 02138 USA
Ivan Yu. Katkov
Affiliation:
Sternberg Astronomical Institute, Moscow State University, 13 Universitetsky pr., Moscow, Russia New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, UAE
Irina Ershova
Affiliation:
Faculty of Space Research, Moscow State University, 1 Leninskie Gory, bld. 52, Moscow, Russia

Abstract

Ultra-diffuse galaxies (UDGs) are spatially extended, low surface brightness stellar systems with regular elliptical-like morphology found in large numbers in galaxy clusters and groups. Studies of the internal dynamics and dark matter content of UDGs have been hampered by their low surface brightnesses. We identified a sample of low-mass early-type post-starburst galaxies, ‘future UDGs’ in the Coma cluster still populated with young stars, which will passively evolve into UDGs in the next 5–10 Gyr. We collected deep observations for a sample of low-mass early-type galaxies in the Coma cluster using MMT Binospec, which includes present-day and future UDGs. We derived their dark matter content within a half-light radius (70–95 %) and total dynamical masses (M200 = 5.5 · 109 − 1.4·1011 M) assuming the Burkert density profile and assess how different proposed evolutionary channels affect dark and visible matter in UDGs. We also discuss observational methodology of present and future UDG studies.

Information

Type
Contributed Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Afanasiev, A. V., Chilingarian, I. V., Grishin, K. A., et al. 2023, MNRAS, 520, 6312 CrossRefGoogle Scholar
Behroozi, P., Wechsler, R. H., Hearin, A. P., & Conroy, C. 2019, MNRAS, 488, 3143 CrossRefGoogle Scholar
Bosch, J., Armstrong, R., Bickerton, S., et al. 2018, PASJ, 70, S5 Google Scholar
Burkert, A. 1995, ApJL, 447, L25 CrossRefGoogle Scholar
Caldwell, N. 2006, ApJ, 651, 822 CrossRefGoogle Scholar
Chilingarian, I., Prugniel, P., Sil’chenko, O., & Koleva, M. 2007, in IAU Symposium, Vol. 241, Stellar Populations as Building Blocks of Galaxies, ed. A. Vazdekis & R. R. Peletier (Cambridge, UK: Cambridge University Press), 175–176Google Scholar
Chilingarian, I. V. 2009, MNRAS, 394, 1229 CrossRefGoogle Scholar
Chilingarian, I. V., Afanasiev, A. V., Grishin, K. A., Fabricant, D., & Moran, S. 2019, ApJ, 884, 79 CrossRefGoogle Scholar
Chilingarian, I. V., & Grishin, K. A. 2020, PASP, 132, 064503 CrossRefGoogle Scholar
Conselice, C. J. 2018, Research Notes of the American Astronomical Society, 2, 43 Google Scholar
Fabricant, D., Fata, R., Epps, H., et al. 2019, PASP, 131, 075004 CrossRefGoogle Scholar
Grishin, K. A., Chilingarian, I. V., Afanasiev, A. V., et al. 2021, Nature Astronomy, 5, 1308 CrossRefGoogle Scholar
Grishin, K. A., Chilingarian, I. V., Afanasiev, A. V., & Katkov, I. Y. 2019, arXiv e-prints, arXiv:1909.13460 Google Scholar
Gunn, J. E., & Gott, III, J. R. 1972, ApJ, 176, 1 CrossRefGoogle Scholar
Kansky, J., Chilingarian, I., Fabricant, D., et al. 2019, PASP, 131, 075005 CrossRefGoogle Scholar
Koda, J., Yagi, M., Yamanoi, H., & Komiyama, Y. 2015, ApJL, 807, L2 CrossRefGoogle Scholar
Le Borgne, D., Rocca-Volmerange, B., Prugniel, P., et al. 2004, Astronomy & Astrophysics, 425, 881 CrossRefGoogle Scholar
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493 CrossRefGoogle Scholar
Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2010, AJ, 139, 2097 CrossRefGoogle Scholar
Sandage, A., & Binggeli, B. 1984, AJ, 89, 919 CrossRefGoogle Scholar
van Dokkum, P. G., Abraham, R., Merritt, A., et al. 2015, ApJL, 798, L45 CrossRefGoogle Scholar
Yozin, C., & Bekki, K. 2015, MNRAS, 452, 937 CrossRefGoogle Scholar