Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T00:10:28.926Z Has data issue: false hasContentIssue false

Comparison of Low-Mass and High-Mass Star Formation

Published online by Cambridge University Press:  12 September 2016

Jonathan C. Tan*
Affiliation:
Depts. of Astronomy & Physics, University of Florida, Gainesville, FL 32611, USA email: jctan.astro@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I review theoretical models of star formation and how they apply across the stellar mass spectrum. Several distinct theories are under active study for massive star formation, especially Turbulent Core Accretion, Competitive Accretion and Protostellar Mergers, leading to distinct observational predictions. These include the types of initial conditions, the structure of infall envelopes, disks and outflows, and the relation of massive star formation to star cluster formation. Even for Core Accretion models, there are several major uncertainties related to the timescale of collapse, the relative importance of different processes for preventing fragmentation in massive cores, and the nature of disks and outflows. I end by discussing some recent observational results that are helping to improve our understanding of these processes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Bally, J. & Zinnecker, H. 2005, AJ, 129, 2281 Google Scholar
Bate, M. R. 2012, MNRAS, 419, 3115 CrossRefGoogle Scholar
Bertoldi, F. & McKee, C. F. 1992, ApJ, 395, 140 Google Scholar
Beltrán, M. T. et al. 2011, A&A, 525, 151 Google Scholar
Beuther, H., Schilke, P. et al. 2002, A&A, 383, 892 Google Scholar
Beuther, H., Linz, H., Tackenberg, J. et al. 2013, A&A, 553, 115 Google Scholar
Bonnell, I. A. & Bate, M. R. 2005, MNRAS, 362, 915 Google Scholar
Bonnell, I. A., Bate, M. R., & Zinnecker, H. 1998, MNRAS, 298, 93 Google Scholar
Bonnell, I. A., Clarke, C. J., Bate, M. R., & Pringle, J. E. 2001, MNRAS, 324, 573 Google Scholar
Bromm, V., 2013, Rep. Prog. Phys., 76, 11 Google Scholar
Butler, M. J. & Tan, J. C., 2012, ApJ 754 5 [BT12] Google Scholar
Caselli, P. & Ceccarelli, C. 2012, A&AR, 20, 56 Google Scholar
Chatterjee, S. & Tan, J. C. 2012, ApJ, 754, 152 Google Scholar
Codella, C., Cabrit, S., Gueth, F. et al. 2014, A&A, 568, L5 Google Scholar
Collins, D., Padoan, P., Norman, M. L., & Xu, H. 2011, ApJ, 731, 59 Google Scholar
Cottaar, M., Covey, K. R., Foster, J. B. et al. 2015, ApJ, 807, 1 CrossRefGoogle Scholar
Crutcher, R. M., Wandelt, B., Heiles, C., et al. 2010, ApJ, 725, 466 CrossRefGoogle Scholar
Cyganowski, C. J., Brogan, C. L., Hunter, T. R. et al. ApJL, 796, 2 CrossRefGoogle Scholar
Da Rio, N., Tan, J. C., & Jaehnig, K. 2014, ApJ, 795, 55 Google Scholar
de Wit, W. J., Testi, L. et al. 2005, A&A, 437, 247 Google Scholar
Dobbs, C. L. et al. 2005, MNRAS, 360, 2 Google Scholar
Downes, D. & Solomon, P. M. 1998, ApJ, 507, 615 Google Scholar
Duarte-Cabral, A. et al. 2013, A&A, 558, 125 Google Scholar
Elmegreen, B. G. 2000, ApJ, 530, 277 Google Scholar
Foster, J. B., Cottaar, M., Covey, K. R. et al. 2015, ApJ, 799, 136 Google Scholar
Gibb, A. G. et al. 2003, MNRAS, 339, 198 Google Scholar
Girart, J. M., Beltrán, M. T., Zhang, Q. et al. 2009, Science, 324, 1408 Google Scholar
Gutermuth, R. A., Megeath, S. T., Myers, P. C., et al. 2009, ApJS, 184, 18 Google Scholar
Guzmán, A. E., Garay, G., Rodríguez, L. F., et al. 2014, ApJ, 796, 117 Google Scholar
Hartmann, L. & Burkert, A. 2007, ApJ, 654, 988 Google Scholar
Hennebelle, P. & Chabrier, G. 2008, ApJ, 684, 395 Google Scholar
Hennebelle, P., Commerçon, B., Joos, M. et al. 2011, A&A, 528, 72 Google Scholar
Hosokawa, T., Omukai, K., Yoshida, N., & Yorke, H. W. 2011, Science, 334, 1250 Google Scholar
Indebetouw, R., Whitney, B. A., Johnson, K. E., & Wood, K. 2006, ApJ, 636, 362 Google Scholar
Inutsuka, S. 2012, PTEP, 2012, 01A307 Google Scholar
Keto, E. 2007, ApJ, 666, 976 Google Scholar
Keto, E., Caselli, P., & Rawlings, J. 2015, ApJ, 446, 3731 Google Scholar
Kong, S., Caselli, P., Tan, J. C. et al. 2015a, ApJ, 804, 98 Google Scholar
Kong, S., Tan, J. C., Caselli, P. et al. 2015b, ApJ, submitted (arXiv:1509.08684)Google Scholar
Krumholz, M. R. & McKee, C. F. 2008, Nature, 451, 1082 Google Scholar
Krumholz, M. R., Klein, R. I. et al. 2007, ApJ, 656, 959 CrossRefGoogle Scholar
Kunz, M. W. & Mouschovias, T. Ch. 2009, MNRAS, 399, L94 Google Scholar
Li, Z.-Y., Banerjee, R. et al. 2014, Protostars & Planets VI, eds. Beuther, et al., p173Google Scholar
Lu, J. R., Ghez, A. M., Morris, M. R. et al. 2014, IAUS, 303, 211 Google Scholar
McKee, C. F. & Tan, J. C., 2002, Nature, 416, 59 Google Scholar
McKee, C. F. & Tan, J. C., 2003, ApJ 585 850 [MT03]Google Scholar
McKee, C. F. & Tan, J. C., 2008, ApJ, 681, 771 Google Scholar
Myers, A. T., McKee, C. F. et al. 2013, ApJ, 766, 97 Google Scholar
Moeckel, N. & Clarke, C. J. 2011, MNRAS, 410, 2799 CrossRefGoogle Scholar
Nakamura, F. & Li, Z.-Y. 2014, ApJ, 783, 115 Google Scholar
Padoan, P. & Nordlund, A. 2002, ApJ, 576, 870 CrossRefGoogle Scholar
Padoan, P., Nordlund, A., Kritsuk, A. G. et al. 2007, ApJ, 661, 972 CrossRefGoogle Scholar
Peters, T., Banerjee, R., Klessen, R. S., & Mac Low, M.-M. 2011, ApJ, 729, 72 CrossRefGoogle Scholar
Peters, T., Mac-Low, M.-M., Banerjee, R. et al. 2010, ApJ, 719, 831 Google Scholar
Pillai, T., Kauffmann, J., Tan, J. C. et al. 2015, ApJ, 799, 74 Google Scholar
Rivilla, V., Martín-Pintado, J., Jiménez-Serra, I., & Rodríguez-Franco, A. 2013, A&A, 554, 48 Google Scholar
Robitaille, T. P., Whitney, B. A., Indebetouw, R. et al. 2006, ApJS, 167, 256 Google Scholar
Sánchez-Monge, Á., Cesaroni, R., Beltrán, M. T. et al. 2013, A&A, L10Google Scholar
Seifried, D., Banerjee, R., Klessen, R. S. et al. 2011, MNRAS, 417, 1054 Google Scholar
Shu, F. H., Adams, F. C., & Lizano, S. 1987, ARA&A, 25, 23 Google Scholar
Smith, R. J., Glover, S. C. O., Bonnell, I. A. et al. 2011, MNRAS, 411, 1354 CrossRefGoogle Scholar
Sobral, D., Matthee, J., Darvish, B. et al. 2015, ApJ, 808, 139 Google Scholar
Tan, J. C., Beltrán, M. et al. 2014, Protostars & Planets VI, eds. Beuther, et al., p149 [T14]Google Scholar
Tan, J. C., Kong, S., Caselli, P. et al. 2013, ApJ, 779, 96 CrossRefGoogle Scholar
Tan, J. C., Krumholz, M. R., & McKee, C. F. 2006, ApJL, 641, L121 Google Scholar
Tan, J. C. & McKee, C. F. 2003, astro-ph/0309139.Google Scholar
Tanaka, K. E. I., Tan, J. C., & Zhang, Y. 2015, ApJ, submitted (arXiv:1509.06754)Google Scholar
Vogelsberger, M., Genel, S., Springel, V. et al. 2014, MNRAS, 444, 1518 Google Scholar
Walch, S., Girichidis, P., Naab, T. et al. 2015, MNRAS, 454, 238 Google Scholar
Wang, P., Li, Z.-Y., Abel, T., & Nakamura, F. 2010, ApJ, 709, 27 Google Scholar
Whitmore, B. C., Chandra, R., Bowers, A. S. et al. 2014, AJ, 147, 78 Google Scholar
Wilson, C. D., Rangwala, N., Glenn, J. et al. 2014, ApJ, 789, 36 Google Scholar
Wyrowski, F., Güsten, R., Menten, K. M. et al. 2012, A&A, 542, L15 Google Scholar
Zhang, Q., Qiu, K., Girart, J. M. et al. 2014, ApJ, 792, 116 Google Scholar
Zhang, Q., Wang, K., Lu, X., & Jiménez-Serra, I. 2015, ApJ, 804, 141 Google Scholar
Zhang, Y. & Tan, J. C. 2011, ApJ, 733, 55 Google Scholar
Zhang, Y. & Tan, J. C. 2015, ApJL, 802, L15 Google Scholar
Zhang, Y., Tan, J. C., & Hosokawa, T. 2014, ApJ 788 166 [ZTH14] Google Scholar
Zhang, Y., Tan, J. C., De Buizer, et al. 2013b, ApJ, 767, 58 Google Scholar
Zhang, Y., Tan, J. C. & McKee, 2013a, ApJ, 766, 86 Google Scholar