Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T22:08:02.587Z Has data issue: false hasContentIssue false

Commissioning Results of a New Polarimeter: Denver University Small Telescope Polarimeter (DUSTPol)

Published online by Cambridge University Press:  24 July 2015

T. M. Wolfe
Affiliation:
University of Denver, Physics and Astronomy Department, Denver, CO, 80208, USA
R. Stencel
Affiliation:
University of Denver, Physics and Astronomy Department, Denver, CO, 80208, USA
G. Cole
Affiliation:
Starphysics Observatory, Reno, NV, USA email: Tristan.Wolfe@du.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

DUSTPol is a dual-beam polarimeter that operates in optical wavelengths, and was built to promote the study of linear polarimetry with smaller telescopes. DUSTPol's performance has demonstrated low instrumental polarization at 0.05 ± 0.02%. This poster presents commissioning results as well as early science observations, and describes software used for data reduction. Recent polarimetric results of RS CVn systems and Wolf-Rayet stars, discussed herein, indicate shape and interaction parameters. By promoting the development of similar polarimeters at other institutions, DUSTPol will serve to establish new collaborative surveys of cool active stars, as well as systems showing evidence of containing complex stellar environments.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Akras, S., Ramirez-Velez, J., Hiriart, D., & Lopez, J. M. 2013, in: Massive Stars: From α to Ω, id. 53 Google Scholar
Bastien, P., Vernet, E., Drissen, L., Ménard, F., Moffat, A. F. J., Robert, C., & St-Louis, N. 2007, in: Sterken, C. (ed.), The Future of Photometric, Spectrophotometric, and Polarimetric Standardization, ASP Conf. Series 364, p. 529Google Scholar
Berdyugin, A., Piirola, V., & Teerikorpi, P. 2014, A&A 561, A24 Google Scholar
Clarke, D. 2010, Stellar Polarimetry, Wiley-VCH, Weinheim, Germany Google Scholar
Cole, G. 2010, Soc. Astron. Sci. Ann. Symp. 29, 37 Google Scholar
di Serego Aligieri, S. 1997, in: Rodriguez Espinosa, J. M., Herrero, A., & Sánchez, F. (ed.) Instrumentation for Large Telescopes Cambridge Univ. Press, p. 287329.Google Scholar
Kochukhov, O., Mantere, M. J., Hackman, T., & Ilyin, I. 2013, A&A 550, A84 Google Scholar
Masiero, J., Hodapp, K., Harrington, D., & Lin, H. 2007, PASP 119, 1126 CrossRefGoogle Scholar
Mellon, R. R., Scheld, D. L., & Stencel, R. E. 2004, Bull. of the AAS, 36, 672 Google Scholar
Pickering, E. C. 1874, Proc. Am. Academy Art Sci., IX, 1 Google Scholar
Rosén, L., Kochukhov, O., & Wade, G. A. 2013, MNRAS 436, L10 Google Scholar
Serkowski, K. 1974, in: Gehrels, T. (ed.), Planets, Stars, and Nebulae: Studied with Photopolarimetry, IAU Colloq. 23, p. 135Google Scholar
Tinbergen, J. & Rutten, R. G. M. 1992, in: A User Guide to WHT Spectropolarimetry, La Palma User Manual No. 21, p. 148Google Scholar
Topasna, G. A., Topasna, D. M., & Popko, G. B. 2013, PASP 125, 1056 CrossRefGoogle Scholar
Vink, J. S., Gräfener, G., & Harries, T. J. 2011, A&A 536, L10 Google Scholar
Wardle, J. F. C. & Kronberg, P. P. 1974, ApJ 194, 249 Google Scholar